热处理钢渣粗集料耐火混凝土物理力学特性试验研究

IF 2.7 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Infrastructures Pub Date : 2023-10-17 DOI:10.3390/infrastructures8100151
Munaf Alkhedr, Majed Asaad, Mahmoud Ismail, George Wardeh
{"title":"热处理钢渣粗集料耐火混凝土物理力学特性试验研究","authors":"Munaf Alkhedr, Majed Asaad, Mahmoud Ismail, George Wardeh","doi":"10.3390/infrastructures8100151","DOIUrl":null,"url":null,"abstract":"The aim of this study is to compare the properties of refractory concrete made with thermally treated and untreated steel slag. Five concrete compositions were prepared and investigated in the present work. The first mixture, referred to as the reference, was formulated using dolomite aggregates, whereas the second and third mixtures were developed by replacing natural coarse aggregate with 50 and 100% by weight of thermally untreated steel slag, respectively. The same replacement ratio (50% and 100%) of thermally treated steel slag was used to produce the fourth and fifth mixtures. Specimens of each specimen were placed in a furnace and heated to 400 °C and 800 °C. The mass loss for all the specimens heated to 400 °C was about 8%, while the reference suffered the maximum mass loss at 800 °C, which was 21.6%. The mixture with a 100% substitution of thermally treated steel slag produced the maximum compressive strength when compared to other mixtures at a temperature of 800 °C. The compressive strength of the M5 mixture was 18 MPa versus 10.87 MPa for the reference mixture. Additionally, optical microscope examination of specimens containing thermally treated steel slag revealed less damage than that observed in mixtures with dolomite.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Physical and Mechanical Characteristics of Refractory Concrete Using Heat-Treated Steel Slag Coarse Aggregates\",\"authors\":\"Munaf Alkhedr, Majed Asaad, Mahmoud Ismail, George Wardeh\",\"doi\":\"10.3390/infrastructures8100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to compare the properties of refractory concrete made with thermally treated and untreated steel slag. Five concrete compositions were prepared and investigated in the present work. The first mixture, referred to as the reference, was formulated using dolomite aggregates, whereas the second and third mixtures were developed by replacing natural coarse aggregate with 50 and 100% by weight of thermally untreated steel slag, respectively. The same replacement ratio (50% and 100%) of thermally treated steel slag was used to produce the fourth and fifth mixtures. Specimens of each specimen were placed in a furnace and heated to 400 °C and 800 °C. The mass loss for all the specimens heated to 400 °C was about 8%, while the reference suffered the maximum mass loss at 800 °C, which was 21.6%. The mixture with a 100% substitution of thermally treated steel slag produced the maximum compressive strength when compared to other mixtures at a temperature of 800 °C. The compressive strength of the M5 mixture was 18 MPa versus 10.87 MPa for the reference mixture. Additionally, optical microscope examination of specimens containing thermally treated steel slag revealed less damage than that observed in mixtures with dolomite.\",\"PeriodicalId\":13601,\"journal\":{\"name\":\"Infrastructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures8100151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures8100151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是比较用热处理钢渣和未经热处理钢渣制成的耐火混凝土的性能。本文制备并研究了五种混凝土组合物。第一种混合物,即参考,是用白云石骨料配制的,而第二种和第三种混合物分别是用50%和100%重量的热处理钢渣代替天然粗骨料研制的。采用相同的替代比例(50%和100%)热处理钢渣生产第四和第五种混合物。将每个标本放入炉中,分别加热至400℃和800℃。所有试样在加热到400℃时的质量损失均在8%左右,而参考试样在800℃时的质量损失最大,为21.6%。当温度为800℃时,与其他混合料相比,100%替代热处理钢渣的混合料产生了最大的抗压强度。M5混合料的抗压强度为18 MPa,而参考混合料为10.87 MPa。此外,光学显微镜检查了含有热处理钢渣的试样,发现其损伤程度小于含有白云石的试样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study on the Physical and Mechanical Characteristics of Refractory Concrete Using Heat-Treated Steel Slag Coarse Aggregates
The aim of this study is to compare the properties of refractory concrete made with thermally treated and untreated steel slag. Five concrete compositions were prepared and investigated in the present work. The first mixture, referred to as the reference, was formulated using dolomite aggregates, whereas the second and third mixtures were developed by replacing natural coarse aggregate with 50 and 100% by weight of thermally untreated steel slag, respectively. The same replacement ratio (50% and 100%) of thermally treated steel slag was used to produce the fourth and fifth mixtures. Specimens of each specimen were placed in a furnace and heated to 400 °C and 800 °C. The mass loss for all the specimens heated to 400 °C was about 8%, while the reference suffered the maximum mass loss at 800 °C, which was 21.6%. The mixture with a 100% substitution of thermally treated steel slag produced the maximum compressive strength when compared to other mixtures at a temperature of 800 °C. The compressive strength of the M5 mixture was 18 MPa versus 10.87 MPa for the reference mixture. Additionally, optical microscope examination of specimens containing thermally treated steel slag revealed less damage than that observed in mixtures with dolomite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infrastructures
Infrastructures Engineering-Building and Construction
CiteScore
5.20
自引率
7.70%
发文量
145
审稿时长
11 weeks
期刊最新文献
A Comprehensive Study on Unsupervised Transfer Learning for Structural Health Monitoring of Bridges Using Joint Distribution Adaptation Improving Lightweight Structural Tuff Concrete Composition Using Three-Factor Experimental Planning Buckling Instability of Monopiles in Liquefied Soil via Structural Reliability Assessment Framework Effect of Incorporating Cement and Olive Waste Ash on the Mechanical Properties of Rammed Earth Block Integrating Machine Learning in Geotechnical Engineering: A Novel Approach for Railway Track Layer Design Based on Cone Penetration Test Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1