具有均相和非均相(HH)化学反应的粘弹性流体的温度依赖性热生成和可变粘度特征

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Scientia Iranica Pub Date : 2023-10-17 DOI:10.24200/sci.2023.61173.7179
Munazza Saeed, Bilal Ahmad, Chemseddine Maatki, Tasawar Abbas, Bilel Hadrich, Sami Ullah Khan, Karim Kriaa, Qazi Mehmood Ul-Hassan, Lioua Kolsi
{"title":"具有均相和非均相(HH)化学反应的粘弹性流体的温度依赖性热生成和可变粘度特征","authors":"Munazza Saeed, Bilal Ahmad, Chemseddine Maatki, Tasawar Abbas, Bilel Hadrich, Sami Ullah Khan, Karim Kriaa, Qazi Mehmood Ul-Hassan, Lioua Kolsi","doi":"10.24200/sci.2023.61173.7179","DOIUrl":null,"url":null,"abstract":"This investigation presents the heat and mass transfer phenomenon for the chemically reactive flow of second grade fluid subject to the homogeneous and heterogeneous (HH) chemical reactions. The viscosity of fluid is assumed to be temperature dependent instead of constant. The motivations for considering the viscosity as a function of temperature is justified with applications of metallurgical process, crude oil extraction, geothermal systems and machinery lubrication. Additionally, viscous dissipation and temperature dependent heat generation and absorption effects are also introduced to improve the thermal transportation phenomenon. The interaction of different new variables facilitates the problem into dimensionless form. The numerical achievements are predicted with implementing the Runge Kutta (RK4) method. The physical onset behind the parameters have been reported. The tabular quantitative analysis is performed for different physical quantities.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"33 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependent heat generation and variable viscosity features for viscoelastic fluid with homogeneous and heterogeneous (HH) chemical reactions\",\"authors\":\"Munazza Saeed, Bilal Ahmad, Chemseddine Maatki, Tasawar Abbas, Bilel Hadrich, Sami Ullah Khan, Karim Kriaa, Qazi Mehmood Ul-Hassan, Lioua Kolsi\",\"doi\":\"10.24200/sci.2023.61173.7179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation presents the heat and mass transfer phenomenon for the chemically reactive flow of second grade fluid subject to the homogeneous and heterogeneous (HH) chemical reactions. The viscosity of fluid is assumed to be temperature dependent instead of constant. The motivations for considering the viscosity as a function of temperature is justified with applications of metallurgical process, crude oil extraction, geothermal systems and machinery lubrication. Additionally, viscous dissipation and temperature dependent heat generation and absorption effects are also introduced to improve the thermal transportation phenomenon. The interaction of different new variables facilitates the problem into dimensionless form. The numerical achievements are predicted with implementing the Runge Kutta (RK4) method. The physical onset behind the parameters have been reported. The tabular quantitative analysis is performed for different physical quantities.\",\"PeriodicalId\":21605,\"journal\":{\"name\":\"Scientia Iranica\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Iranica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.61173.7179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.61173.7179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二级流体在均相和非均相化学反应下的化学反应流的传热传质现象。假定流体的粘度与温度有关,而不是恒定的。考虑粘度作为温度函数的动机与冶金过程、原油开采、地热系统和机械润滑的应用是合理的。此外,还引入了粘性耗散和温度相关的产热和吸收效应来改善热输运现象。不同新变量的相互作用使问题易于转化为无量纲形式。采用Runge Kutta (RK4)方法对数值结果进行了预测。已经报道了这些参数背后的物理现象。对不同物理量进行表格式定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature dependent heat generation and variable viscosity features for viscoelastic fluid with homogeneous and heterogeneous (HH) chemical reactions
This investigation presents the heat and mass transfer phenomenon for the chemically reactive flow of second grade fluid subject to the homogeneous and heterogeneous (HH) chemical reactions. The viscosity of fluid is assumed to be temperature dependent instead of constant. The motivations for considering the viscosity as a function of temperature is justified with applications of metallurgical process, crude oil extraction, geothermal systems and machinery lubrication. Additionally, viscous dissipation and temperature dependent heat generation and absorption effects are also introduced to improve the thermal transportation phenomenon. The interaction of different new variables facilitates the problem into dimensionless form. The numerical achievements are predicted with implementing the Runge Kutta (RK4) method. The physical onset behind the parameters have been reported. The tabular quantitative analysis is performed for different physical quantities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Iranica
Scientia Iranica 工程技术-工程:综合
CiteScore
2.90
自引率
7.10%
发文量
59
审稿时长
2 months
期刊介绍: The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas. The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.
期刊最新文献
Improving the Performance of Variable Reluctance Resolver Against Short Circuit Using Physical Parameters Temperature dependent heat generation and variable viscosity features for viscoelastic fluid with homogeneous and heterogeneous (HH) chemical reactions Simultaneous energy hub operation and construction for investigating quantitative flexibility considering uncertain supply and demand side resources An economic order quantity model for two deteriorating items with mutually complementary price and time dependent demand Modeling of Jet Electrochemical Machining Using Numerical and Design of Experiments Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1