双子星红外多目标摄谱仪自适应光学系统:性能建模

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Publications of the Astronomical Society of the Pacific Pub Date : 2023-10-01 DOI:10.1088/1538-3873/acf61c
Uriel Conod, Kate Jackson, Paolo Turri, Scott Chapman, Olivier Lardière, Masen Lamb, Carlos Correia, Gaetano Sivo, Suresh Sivanandam, Jean-Pierre Véran
{"title":"双子星红外多目标摄谱仪自适应光学系统:性能建模","authors":"Uriel Conod, Kate Jackson, Paolo Turri, Scott Chapman, Olivier Lardière, Masen Lamb, Carlos Correia, Gaetano Sivo, Suresh Sivanandam, Jean-Pierre Véran","doi":"10.1088/1538-3873/acf61c","DOIUrl":null,"url":null,"abstract":"Abstract The Gemini Infrared Multi-Object Spectrograph (GIRMOS) will be a near-infrared, multi-object, medium spectral resolution, integral field spectrograph (IFS) for Gemini North Telescope, designed to operate behind the future Gemini North Adaptive Optics system (GNAO). In addition to a first ground layer Adaptive Optics (AO) correction in closed loop carried out by GNAO, each of the four GIRMOS IFSs will independently perform additional multi-object AO correction in open loop, resulting in an improved image quality that is critical to achieve top level science requirements. We present the baseline parameters and simulated performance of GIRMOS obtained by modeling both the GNAO and GIRMOS AO systems. The image quality requirement for GIRMOS is that 57% of the energy of an unresolved point-spread function ensquared within a 0.1 × 0.1 arcsecond at 2.0 μ m. It was established that GIRMOS will be an order 16 × 16 adaptive optics (AO) system after examining the tradeoffs between performance, risks and costs. The ensquared energy requirement will be met in median atmospheric conditions at Maunakea at 30° from zenith.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Adaptive Optics System for the Gemini Infrared Multi-Object Spectrograph: Performance Modeling\",\"authors\":\"Uriel Conod, Kate Jackson, Paolo Turri, Scott Chapman, Olivier Lardière, Masen Lamb, Carlos Correia, Gaetano Sivo, Suresh Sivanandam, Jean-Pierre Véran\",\"doi\":\"10.1088/1538-3873/acf61c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Gemini Infrared Multi-Object Spectrograph (GIRMOS) will be a near-infrared, multi-object, medium spectral resolution, integral field spectrograph (IFS) for Gemini North Telescope, designed to operate behind the future Gemini North Adaptive Optics system (GNAO). In addition to a first ground layer Adaptive Optics (AO) correction in closed loop carried out by GNAO, each of the four GIRMOS IFSs will independently perform additional multi-object AO correction in open loop, resulting in an improved image quality that is critical to achieve top level science requirements. We present the baseline parameters and simulated performance of GIRMOS obtained by modeling both the GNAO and GIRMOS AO systems. The image quality requirement for GIRMOS is that 57% of the energy of an unresolved point-spread function ensquared within a 0.1 × 0.1 arcsecond at 2.0 μ m. It was established that GIRMOS will be an order 16 × 16 adaptive optics (AO) system after examining the tradeoffs between performance, risks and costs. The ensquared energy requirement will be met in median atmospheric conditions at Maunakea at 30° from zenith.\",\"PeriodicalId\":20820,\"journal\":{\"name\":\"Publications of the Astronomical Society of the Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of the Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1538-3873/acf61c\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1538-3873/acf61c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

双子座红外多目标摄谱仪(GIRMOS)是一种近红外、多目标、中光谱分辨率的积分场摄谱仪(IFS),用于未来的双子座北方自适应光学系统(GNAO)。除了GNAO在闭环中进行第一层自适应光学(AO)校正外,四个GIRMOS ifs中的每一个都将独立地在开环中进行额外的多目标AO校正,从而提高图像质量,这对于达到顶级科学要求至关重要。通过对GNAO和GIRMOS AO系统进行建模,得到了GIRMOS的基线参数和模拟性能。GIRMOS的图像质量要求是在0.1 × 0.1角秒内,在2.0 μ m处,未解析点扩展函数的能量的57%被平方。通过对性能、风险和成本的权衡,确定了GIRMOS将是一个16 × 16阶自适应光学(AO)系统。在距离天顶30°的莫纳克亚的中等大气条件下,平方能量需求将得到满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Adaptive Optics System for the Gemini Infrared Multi-Object Spectrograph: Performance Modeling
Abstract The Gemini Infrared Multi-Object Spectrograph (GIRMOS) will be a near-infrared, multi-object, medium spectral resolution, integral field spectrograph (IFS) for Gemini North Telescope, designed to operate behind the future Gemini North Adaptive Optics system (GNAO). In addition to a first ground layer Adaptive Optics (AO) correction in closed loop carried out by GNAO, each of the four GIRMOS IFSs will independently perform additional multi-object AO correction in open loop, resulting in an improved image quality that is critical to achieve top level science requirements. We present the baseline parameters and simulated performance of GIRMOS obtained by modeling both the GNAO and GIRMOS AO systems. The image quality requirement for GIRMOS is that 57% of the energy of an unresolved point-spread function ensquared within a 0.1 × 0.1 arcsecond at 2.0 μ m. It was established that GIRMOS will be an order 16 × 16 adaptive optics (AO) system after examining the tradeoffs between performance, risks and costs. The ensquared energy requirement will be met in median atmospheric conditions at Maunakea at 30° from zenith.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
期刊最新文献
The Valuable Long-period Cluster Cepheid KQ Scorpii and other Calibration Candidates A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves Multi-amplifier Sensing Charge-coupled Devices for Next Generation Spectroscopy Ejecta Masses in Type Ia Supernovae—Implications for the Progenitor and the Explosion Scenario* * Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximillians-Universitaet Muenchen, and Georg-August Universitaet Goettingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. Physical Properties of Embedded Clusters in ATLASGAL Clumps with H ii Regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1