Brian Ning, Sebastian Jaimungal, Xiaorong Zhang, Maxime Bergeron
{"title":"用变分自编码器生成无套利隐含波动面","authors":"Brian Ning, Sebastian Jaimungal, Xiaorong Zhang, Maxime Bergeron","doi":"10.1137/21m1443546","DOIUrl":null,"url":null,"abstract":"We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free variational autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and Lévy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces. We further refine the VAE model by including conditional features and demonstrate its superior generative out-of-sample performance. Finally, we showcase how our method can be used as a data augmentation tool to help practitioners manage the tail risk of option portfolios.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"30 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Arbitrage-Free Implied Volatility Surface Generation with Variational Autoencoders\",\"authors\":\"Brian Ning, Sebastian Jaimungal, Xiaorong Zhang, Maxime Bergeron\",\"doi\":\"10.1137/21m1443546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free variational autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and Lévy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces. We further refine the VAE model by including conditional features and demonstrate its superior generative out-of-sample performance. Finally, we showcase how our method can be used as a data augmentation tool to help practitioners manage the tail risk of option portfolios.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1443546\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1443546","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Arbitrage-Free Implied Volatility Surface Generation with Variational Autoencoders
We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free variational autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and Lévy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces. We further refine the VAE model by including conditional features and demonstrate its superior generative out-of-sample performance. Finally, we showcase how our method can be used as a data augmentation tool to help practitioners manage the tail risk of option portfolios.
期刊介绍:
SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.