Miguel Soriano-Amat, Philippe Guay, Hugo F. Martins, Sonia Martin-Lopez, Miguel Gonzalez-Herraez, María R. Fernández-Ruiz, Jerome Genest
{"title":"毫米空间分辨率,时间扩展型","authors":"Miguel Soriano-Amat, Philippe Guay, Hugo F. Martins, Sonia Martin-Lopez, Miguel Gonzalez-Herraez, María R. Fernández-Ruiz, Jerome Genest","doi":"10.1063/5.0150991","DOIUrl":null,"url":null,"abstract":"Time-expanded phase-sensitive optical time-domain reflectometry is a distributed optical fiber sensing technology based on dual-frequency combs that allows for dynamic and high spatial resolution measurements while maintaining reduced detection requirements. Since the formalization of the technique, different experimental schemes have been satisfactorily tested, with a general performance of cm-scale spatial resolution over hundreds of meters. In this article, we present an optimized scheme with enhanced energy and spectral efficiencies that allows reaching 5 mm spatial resolution. As compared to previous experimental approaches, the presented architecture is based on a free-running dual comb setup generated through pure electro-optical phase modulation. Besides, the introduction of an optical hybrid in the detection stage allows for doubling the spatial resolution while keeping the refresh rate and the sensing range unchanged.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"87 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Millimetric spatial resolution time-expanded <i>ϕ</i>-OTDR\",\"authors\":\"Miguel Soriano-Amat, Philippe Guay, Hugo F. Martins, Sonia Martin-Lopez, Miguel Gonzalez-Herraez, María R. Fernández-Ruiz, Jerome Genest\",\"doi\":\"10.1063/5.0150991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-expanded phase-sensitive optical time-domain reflectometry is a distributed optical fiber sensing technology based on dual-frequency combs that allows for dynamic and high spatial resolution measurements while maintaining reduced detection requirements. Since the formalization of the technique, different experimental schemes have been satisfactorily tested, with a general performance of cm-scale spatial resolution over hundreds of meters. In this article, we present an optimized scheme with enhanced energy and spectral efficiencies that allows reaching 5 mm spatial resolution. As compared to previous experimental approaches, the presented architecture is based on a free-running dual comb setup generated through pure electro-optical phase modulation. Besides, the introduction of an optical hybrid in the detection stage allows for doubling the spatial resolution while keeping the refresh rate and the sensing range unchanged.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0150991\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0150991","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Time-expanded phase-sensitive optical time-domain reflectometry is a distributed optical fiber sensing technology based on dual-frequency combs that allows for dynamic and high spatial resolution measurements while maintaining reduced detection requirements. Since the formalization of the technique, different experimental schemes have been satisfactorily tested, with a general performance of cm-scale spatial resolution over hundreds of meters. In this article, we present an optimized scheme with enhanced energy and spectral efficiencies that allows reaching 5 mm spatial resolution. As compared to previous experimental approaches, the presented architecture is based on a free-running dual comb setup generated through pure electro-optical phase modulation. Besides, the introduction of an optical hybrid in the detection stage allows for doubling the spatial resolution while keeping the refresh rate and the sensing range unchanged.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.