Jiahui Cui, Jingyao Zhao, Xiyu Dong, Carlos Pérez-Mejías, Jing Lu, Ye Tian, Jian Wang, Liangkang Pan, Haiwei Zhang, Hai Cheng
{"title":"利用亚洲季风区年度层压岩洞精确约束第二次消冰期134-ka强季风事件","authors":"Jiahui Cui, Jingyao Zhao, Xiyu Dong, Carlos Pérez-Mejías, Jing Lu, Ye Tian, Jian Wang, Liangkang Pan, Haiwei Zhang, Hai Cheng","doi":"10.1017/qua.2023.43","DOIUrl":null,"url":null,"abstract":"Abstract The penultimate deglaciation was characterized by a sub-millennial-scale warm event in the Heinrich Stadial 11(HS11), termed the 134-ka event. However, its precise timing and structure remain poorly constrained due to the lack of high-resolution and precisely dated records. We present an oxygen isotope record of a speleothem with well-developed annual lamina from Zhangjia Cave, located on the north margin of the Sichuan Basin, characterizing Asian summer monsoon (ASM) changes in the 134-ka event, which included an increase excursion of ca. 149 years and decrease excursion of ca. 200 years, inferred from 3.3‰ δ 18 O variations. This event also divided the weak ASM interval-II (WMI-II), corresponding to HS11, into two stages, the WMI-IIa 132.8–134.1 ka and WMI-IIb 134.4–136.4 ka. With a comparable climatic pattern globally, the 134-ka event is essentially similar to the millennial-scale events in last glacial–deglacial period. Particularly, the observed weak-strong-weak ASM sequence (138.8–132.8 ka) is largely controlled by changes in the Atlantic Meridional Overturning Circulation (AMOC) forced by the meltwater of northern high-latitude ice sheets. Moreover, our results underpin that AMOC, rather than the global ice volume, is more critical to ASM variations during the last two deglaciations.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"28 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precisely constrained 134-ka strong monsoon event in the penultimate deglaciation by an annually laminated speleothem from the Asian monsoon domain\",\"authors\":\"Jiahui Cui, Jingyao Zhao, Xiyu Dong, Carlos Pérez-Mejías, Jing Lu, Ye Tian, Jian Wang, Liangkang Pan, Haiwei Zhang, Hai Cheng\",\"doi\":\"10.1017/qua.2023.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The penultimate deglaciation was characterized by a sub-millennial-scale warm event in the Heinrich Stadial 11(HS11), termed the 134-ka event. However, its precise timing and structure remain poorly constrained due to the lack of high-resolution and precisely dated records. We present an oxygen isotope record of a speleothem with well-developed annual lamina from Zhangjia Cave, located on the north margin of the Sichuan Basin, characterizing Asian summer monsoon (ASM) changes in the 134-ka event, which included an increase excursion of ca. 149 years and decrease excursion of ca. 200 years, inferred from 3.3‰ δ 18 O variations. This event also divided the weak ASM interval-II (WMI-II), corresponding to HS11, into two stages, the WMI-IIa 132.8–134.1 ka and WMI-IIb 134.4–136.4 ka. With a comparable climatic pattern globally, the 134-ka event is essentially similar to the millennial-scale events in last glacial–deglacial period. Particularly, the observed weak-strong-weak ASM sequence (138.8–132.8 ka) is largely controlled by changes in the Atlantic Meridional Overturning Circulation (AMOC) forced by the meltwater of northern high-latitude ice sheets. Moreover, our results underpin that AMOC, rather than the global ice volume, is more critical to ASM variations during the last two deglaciations.\",\"PeriodicalId\":49643,\"journal\":{\"name\":\"Quaternary Research\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qua.2023.43\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qua.2023.43","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Precisely constrained 134-ka strong monsoon event in the penultimate deglaciation by an annually laminated speleothem from the Asian monsoon domain
Abstract The penultimate deglaciation was characterized by a sub-millennial-scale warm event in the Heinrich Stadial 11(HS11), termed the 134-ka event. However, its precise timing and structure remain poorly constrained due to the lack of high-resolution and precisely dated records. We present an oxygen isotope record of a speleothem with well-developed annual lamina from Zhangjia Cave, located on the north margin of the Sichuan Basin, characterizing Asian summer monsoon (ASM) changes in the 134-ka event, which included an increase excursion of ca. 149 years and decrease excursion of ca. 200 years, inferred from 3.3‰ δ 18 O variations. This event also divided the weak ASM interval-II (WMI-II), corresponding to HS11, into two stages, the WMI-IIa 132.8–134.1 ka and WMI-IIb 134.4–136.4 ka. With a comparable climatic pattern globally, the 134-ka event is essentially similar to the millennial-scale events in last glacial–deglacial period. Particularly, the observed weak-strong-weak ASM sequence (138.8–132.8 ka) is largely controlled by changes in the Atlantic Meridional Overturning Circulation (AMOC) forced by the meltwater of northern high-latitude ice sheets. Moreover, our results underpin that AMOC, rather than the global ice volume, is more critical to ASM variations during the last two deglaciations.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.