Agustin R. García, J. Zavala-Hidalgo, H. Delgado-Granados, J. Garcia-Escalante, O. Gómez-Ramos, D. Herrera-Moro
{"title":"自动火山灰分散预测系统:以墨西哥popocatacemoterl火山为例","authors":"Agustin R. García, J. Zavala-Hidalgo, H. Delgado-Granados, J. Garcia-Escalante, O. Gómez-Ramos, D. Herrera-Moro","doi":"10.1186/s13617-023-00135-4","DOIUrl":null,"url":null,"abstract":"Abstract An operational volcanic ash dispersion forecast system was developed for Popocatépetl. It runs automatically every day developing 108 possible scenarios of ash dispersion for the following 36 h. Scenarios are simulated for three eruption column heights: 3 km, 5 km, and 10 km above the volcano’s crater level, every hour for eruptions lasting 1 h. For each hypothetical eruption that starts every hour, the dispersion during the following 8 h is modelled. The system uses the Weather Research and Forecasting (WRF) model for weather data and the Fall3D model. It includes a visualization website that displays, among other products: ground accumulation, deposit load, and concentration at relevant flight levels. Popocatépetl volcano, located ~ 60 km from Mexico Megacity was selected as a case study. A comparison from ash forecast system results and satellite observations is presented. The system developed and tested here can be adapted to be operative at any volcano.","PeriodicalId":37908,"journal":{"name":"Journal of Applied Volcanology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated ash dispersion forecast system: case study Popocatépetl volcano, Mexico\",\"authors\":\"Agustin R. García, J. Zavala-Hidalgo, H. Delgado-Granados, J. Garcia-Escalante, O. Gómez-Ramos, D. Herrera-Moro\",\"doi\":\"10.1186/s13617-023-00135-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An operational volcanic ash dispersion forecast system was developed for Popocatépetl. It runs automatically every day developing 108 possible scenarios of ash dispersion for the following 36 h. Scenarios are simulated for three eruption column heights: 3 km, 5 km, and 10 km above the volcano’s crater level, every hour for eruptions lasting 1 h. For each hypothetical eruption that starts every hour, the dispersion during the following 8 h is modelled. The system uses the Weather Research and Forecasting (WRF) model for weather data and the Fall3D model. It includes a visualization website that displays, among other products: ground accumulation, deposit load, and concentration at relevant flight levels. Popocatépetl volcano, located ~ 60 km from Mexico Megacity was selected as a case study. A comparison from ash forecast system results and satellite observations is presented. The system developed and tested here can be adapted to be operative at any volcano.\",\"PeriodicalId\":37908,\"journal\":{\"name\":\"Journal of Applied Volcanology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Volcanology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13617-023-00135-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Volcanology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13617-023-00135-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
An automated ash dispersion forecast system: case study Popocatépetl volcano, Mexico
Abstract An operational volcanic ash dispersion forecast system was developed for Popocatépetl. It runs automatically every day developing 108 possible scenarios of ash dispersion for the following 36 h. Scenarios are simulated for three eruption column heights: 3 km, 5 km, and 10 km above the volcano’s crater level, every hour for eruptions lasting 1 h. For each hypothetical eruption that starts every hour, the dispersion during the following 8 h is modelled. The system uses the Weather Research and Forecasting (WRF) model for weather data and the Fall3D model. It includes a visualization website that displays, among other products: ground accumulation, deposit load, and concentration at relevant flight levels. Popocatépetl volcano, located ~ 60 km from Mexico Megacity was selected as a case study. A comparison from ash forecast system results and satellite observations is presented. The system developed and tested here can be adapted to be operative at any volcano.
期刊介绍:
Journal of Applied Volcanology is an international journal with a focus on applied research relating to volcanism and particularly its societal impacts. Characterising volcanic impacts and associated risk relies on not only quantifying physical threat but also understanding social and physical vulnerability and resilience. The broad aim of volcanologists in this domain is to increase public resilience to volcanic risk via research that reduces both human fatalities and volcanic impacts on livelihoods, infrastructure, and the economy. Journal of Applied Volcanology fills an important gap for scientists who want to publish research that addresses this aim and wish to reach a broad audience. The journal has a holistic view of the relationship between volcanoes and society, and therefore welcomes intra- cross- multi- inter- and transdisciplinary articles that deal with volcanoes and society. Research topics covered by the journal include: the impacts of eruptions on communities; methods for risk analysis; risk management; community preparedness, response to and recovery from volcanic hazard events; health issues related to volcanism; social adaptation to volcanic hazards; policy and institutional aspects of volcanic risk management; applications of physical volcanology, geophysics and remote sensing to volcanic crisis mitigation. The journal aims for rapid publication of high-impact research and review papers.