配备rf漏斗和rf聚束器的双喷嘴技术用于离子束真空抽提

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Atoms Pub Date : 2023-09-22 DOI:10.3390/atoms11100123
Victor Varentsov
{"title":"配备rf漏斗和rf聚束器的双喷嘴技术用于离子束真空抽提","authors":"Victor Varentsov","doi":"10.3390/atoms11100123","DOIUrl":null,"url":null,"abstract":"This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"7 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Double-Nozzle Technique Equipped with RF-Only Funnel and RF-Buncher for the Ion Beam Extraction into Vacuum\",\"authors\":\"Victor Varentsov\",\"doi\":\"10.3390/atoms11100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11100123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11100123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究是我们在今年早些时候发表在《原子》杂志上的论文《关于一种新的气体喷射激光共振电离光谱双喷嘴技术的建议》的进一步发展。在这里,我们建议在双喷嘴出口下游70毫米距离处的气体喷射室中配备仅rf漏斗和rf集束器的双喷嘴技术。它允许高度有效地提取到真空重离子束,在氩气超音速射流中产生两步激光共振电离。我们通过详细的气体动力学和蒙特卡罗轨迹模拟,探索了这种新的完整版本的双喷嘴技术的操作,并给出了结果并进行了讨论。特别地,我们的计算表明,超过80%的所有的nobel254中性原子,通过氩气流从气停池中提取,然后可以以脉冲离子束的形式提取到真空中,具有低的横向和纵向发射度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Double-Nozzle Technique Equipped with RF-Only Funnel and RF-Buncher for the Ion Beam Extraction into Vacuum
This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
期刊最新文献
A Study of the Atomic Processes of Highly Charged Ions Embedded in Dense Plasma Reactions of CH2OO, CH3CHOO, and (CH3)2COO with Methane through the Formation of Intermediate Complex Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters On Rayleigh–Taylor Dynamics Modeling Femtosecond Reduction of Atomic Scattering Factors in X-ray-Excited Silicon with Boltzmann Kinetic Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1