{"title":"配备rf漏斗和rf聚束器的双喷嘴技术用于离子束真空抽提","authors":"Victor Varentsov","doi":"10.3390/atoms11100123","DOIUrl":null,"url":null,"abstract":"This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"7 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Double-Nozzle Technique Equipped with RF-Only Funnel and RF-Buncher for the Ion Beam Extraction into Vacuum\",\"authors\":\"Victor Varentsov\",\"doi\":\"10.3390/atoms11100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11100123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11100123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
The Double-Nozzle Technique Equipped with RF-Only Funnel and RF-Buncher for the Ion Beam Extraction into Vacuum
This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions