{"title":"量子通信复杂度线性回归","authors":"Ashley Montanaro, Changpeng Shao","doi":"10.1145/3625225","DOIUrl":null,"url":null,"abstract":"Quantum computers may achieve speedups over their classical counterparts for solving linear algebra problems. However, in some cases – such as for low-rank matrices – dequantised algorithms demonstrate that there cannot be an exponential quantum speedup. In this work, we show that quantum computers have provable polynomial and exponential speedups in terms of communication complexity for some fundamental linear algebra problems if there is no restriction on the rank. We mainly focus on solving linear regression and Hamiltonian simulation. In the quantum case, the task is to prepare the quantum state of the result. To allow for a fair comparison, in the classical case, the task is to sample from the result. We investigate these two problems in two-party and multiparty models, propose near-optimal quantum protocols and prove quantum/classical lower bounds. In this process, we propose an efficient quantum protocol for quantum singular value transformation, which is a powerful technique for designing quantum algorithms. We feel this will be helpful in developing efficient quantum protocols for many other problems.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quantum communication complexity of linear regression\",\"authors\":\"Ashley Montanaro, Changpeng Shao\",\"doi\":\"10.1145/3625225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computers may achieve speedups over their classical counterparts for solving linear algebra problems. However, in some cases – such as for low-rank matrices – dequantised algorithms demonstrate that there cannot be an exponential quantum speedup. In this work, we show that quantum computers have provable polynomial and exponential speedups in terms of communication complexity for some fundamental linear algebra problems if there is no restriction on the rank. We mainly focus on solving linear regression and Hamiltonian simulation. In the quantum case, the task is to prepare the quantum state of the result. To allow for a fair comparison, in the classical case, the task is to sample from the result. We investigate these two problems in two-party and multiparty models, propose near-optimal quantum protocols and prove quantum/classical lower bounds. In this process, we propose an efficient quantum protocol for quantum singular value transformation, which is a powerful technique for designing quantum algorithms. We feel this will be helpful in developing efficient quantum protocols for many other problems.\",\"PeriodicalId\":44045,\"journal\":{\"name\":\"ACM Transactions on Computation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3625225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quantum communication complexity of linear regression
Quantum computers may achieve speedups over their classical counterparts for solving linear algebra problems. However, in some cases – such as for low-rank matrices – dequantised algorithms demonstrate that there cannot be an exponential quantum speedup. In this work, we show that quantum computers have provable polynomial and exponential speedups in terms of communication complexity for some fundamental linear algebra problems if there is no restriction on the rank. We mainly focus on solving linear regression and Hamiltonian simulation. In the quantum case, the task is to prepare the quantum state of the result. To allow for a fair comparison, in the classical case, the task is to sample from the result. We investigate these two problems in two-party and multiparty models, propose near-optimal quantum protocols and prove quantum/classical lower bounds. In this process, we propose an efficient quantum protocol for quantum singular value transformation, which is a powerful technique for designing quantum algorithms. We feel this will be helpful in developing efficient quantum protocols for many other problems.