一种利用混合机器学习算法检测url网络钓鱼的新方法

Nguyen Manh Thang, Lê Quang Anh, Hứa Song Toàn, Nguyễn Quốc Trung
{"title":"一种利用混合机器学习算法检测url网络钓鱼的新方法","authors":"Nguyen Manh Thang, Lê Quang Anh, Hứa Song Toàn, Nguyễn Quốc Trung","doi":"10.54654/isj.v2i19.978","DOIUrl":null,"url":null,"abstract":"Abstract— The phishing attack is the type of cyberattack that targets people’s trust by masking the malicious intent of the attack as communications from reputable sources. The goal is to steal sensitive data from the victim(s) (banking information, social identification, credentials, etc.) for various purposes (selling for monetary gain, performing identity thief, using as a lever for escalation attack). In 2022, the number of reported phishing attacks will reach a whopping 255 million cases, an increment of 61% compared to 2021. Existing methods of phishing URL detection have limitations. The article proposes a method to increase the accuracy of detecting malicious URL by using machine learning methods Linear Support Vector Classification and multinomial Naive Bayes with voting mechanisms.","PeriodicalId":471638,"journal":{"name":"Nghiên cứu khoa học và công nghệ trong lĩnh vực an toàn thông tin","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for detecting URLs phishing using hybrid machine learning algorithm\",\"authors\":\"Nguyen Manh Thang, Lê Quang Anh, Hứa Song Toàn, Nguyễn Quốc Trung\",\"doi\":\"10.54654/isj.v2i19.978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— The phishing attack is the type of cyberattack that targets people’s trust by masking the malicious intent of the attack as communications from reputable sources. The goal is to steal sensitive data from the victim(s) (banking information, social identification, credentials, etc.) for various purposes (selling for monetary gain, performing identity thief, using as a lever for escalation attack). In 2022, the number of reported phishing attacks will reach a whopping 255 million cases, an increment of 61% compared to 2021. Existing methods of phishing URL detection have limitations. The article proposes a method to increase the accuracy of detecting malicious URL by using machine learning methods Linear Support Vector Classification and multinomial Naive Bayes with voting mechanisms.\",\"PeriodicalId\":471638,\"journal\":{\"name\":\"Nghiên cứu khoa học và công nghệ trong lĩnh vực an toàn thông tin\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nghiên cứu khoa học và công nghệ trong lĩnh vực an toàn thông tin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54654/isj.v2i19.978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nghiên cứu khoa học và công nghệ trong lĩnh vực an toàn thông tin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54654/isj.v2i19.978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:网络钓鱼攻击是一种网络攻击,通过将攻击的恶意意图伪装成来自信誉良好的来源的通信来攻击人们的信任。目标是从受害者那里窃取敏感数据(银行信息、社会身份、凭证等),用于各种目的(出售以获取金钱、执行身份窃贼、用作升级攻击的杠杆)。到2022年,报告的网络钓鱼攻击数量将达到2.55亿起,与2021年相比增长61%。现有的网络钓鱼URL检测方法存在局限性。本文提出了一种利用机器学习方法线性支持向量分类和带有投票机制的多项式朴素贝叶斯来提高恶意URL检测准确率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel method for detecting URLs phishing using hybrid machine learning algorithm
Abstract— The phishing attack is the type of cyberattack that targets people’s trust by masking the malicious intent of the attack as communications from reputable sources. The goal is to steal sensitive data from the victim(s) (banking information, social identification, credentials, etc.) for various purposes (selling for monetary gain, performing identity thief, using as a lever for escalation attack). In 2022, the number of reported phishing attacks will reach a whopping 255 million cases, an increment of 61% compared to 2021. Existing methods of phishing URL detection have limitations. The article proposes a method to increase the accuracy of detecting malicious URL by using machine learning methods Linear Support Vector Classification and multinomial Naive Bayes with voting mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental results of electromagnetic analysis on smartcard A novel method for detecting URLs phishing using hybrid machine learning algorithm Tăng cường độ chính xác trong việc nhận diện đối tượng trên các thiết bị cạnh thông minh (SEDs) Phân loại luồng dữ liệu dựa trên học chuyển giao đa nguồn trong hệ thống mạng SDN phân tán Nghiên cứu một số phương pháp chế áp tín hiệu Wifi tiêu chuẩn IEEE 802.11 dưới 6 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1