深共晶溶剂和柠檬酸萃取对虾壳中的几丁质

Tran Chi Hai, Nguyen Tan Dat, Quach Le Anh Tuan, Huynh Le Thanh Ngan, Nguyen Duong Thien Tu, Nguyen Tan Thinh, Duy Nhat Quang, Le Thi Hong Anh, Phan Van Man
{"title":"深共晶溶剂和柠檬酸萃取对虾壳中的几丁质","authors":"Tran Chi Hai, Nguyen Tan Dat, Quach Le Anh Tuan, Huynh Le Thanh Ngan, Nguyen Duong Thien Tu, Nguyen Tan Thinh, Duy Nhat Quang, Le Thi Hong Anh, Phan Van Man","doi":"10.14416/j.asep.2023.10.006","DOIUrl":null,"url":null,"abstract":"Chitin, a natural biomass resource, has shown great promise for a wide range of applications because of its high bioactivity. This study evaluated the effectiveness of deep eutectic solvents (DESs) mixed with citric acid as a method for extracting chitin from the shells of giant tiger prawn shrimps (Penaeus monodon). The purity and physicochemical properties of the extracted chitin were compared with those obtained using the traditional chemical extraction method and commercial chitin. The results showed that the highest chitin purity (99.22%) was achieved when choline chloride-glycerol (ChCl–Gl) was used in a 1:2 molar ratio with a citric acid content of 5% w/v (CG2-5%). Additionally, the extracted chitin had a molecular weight of 3.75 × 105 Da and a crystallinity index of 81.34%, which was slightly higher than that of chitin extracted using the conventional method (3.24 × 105 Da and 73.59%). However, there was no significant difference between chitin extracted by CG2-5% and commercial chitin. This suggests that the structure of the biopolymer remained intact following the CG2-5% extraction process. The α-chitins in tiger prawn shrimp shells, as confirmed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray Diffraction Analysis (XRD), are analogous to commercial shrimp chitin. These results, achieved without employing potentially harmful chemicals, demonstrate that CG2-5% can efficiently enhance chitin extraction from diverse raw biomass sources without jeopardizing the polymer's structural stability.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Chitin from Giant Tiger Prawn (Penaeus monodon) Shrimp Shell Using Deep Eutectic Solvents and Citric Acid\",\"authors\":\"Tran Chi Hai, Nguyen Tan Dat, Quach Le Anh Tuan, Huynh Le Thanh Ngan, Nguyen Duong Thien Tu, Nguyen Tan Thinh, Duy Nhat Quang, Le Thi Hong Anh, Phan Van Man\",\"doi\":\"10.14416/j.asep.2023.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chitin, a natural biomass resource, has shown great promise for a wide range of applications because of its high bioactivity. This study evaluated the effectiveness of deep eutectic solvents (DESs) mixed with citric acid as a method for extracting chitin from the shells of giant tiger prawn shrimps (Penaeus monodon). The purity and physicochemical properties of the extracted chitin were compared with those obtained using the traditional chemical extraction method and commercial chitin. The results showed that the highest chitin purity (99.22%) was achieved when choline chloride-glycerol (ChCl–Gl) was used in a 1:2 molar ratio with a citric acid content of 5% w/v (CG2-5%). Additionally, the extracted chitin had a molecular weight of 3.75 × 105 Da and a crystallinity index of 81.34%, which was slightly higher than that of chitin extracted using the conventional method (3.24 × 105 Da and 73.59%). However, there was no significant difference between chitin extracted by CG2-5% and commercial chitin. This suggests that the structure of the biopolymer remained intact following the CG2-5% extraction process. The α-chitins in tiger prawn shrimp shells, as confirmed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray Diffraction Analysis (XRD), are analogous to commercial shrimp chitin. These results, achieved without employing potentially harmful chemicals, demonstrate that CG2-5% can efficiently enhance chitin extraction from diverse raw biomass sources without jeopardizing the polymer's structural stability.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.10.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.10.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

几丁质是一种天然的生物质资源,具有很高的生物活性,具有广泛的应用前景。研究了柠檬酸混合深度共晶溶剂(DESs)对虎对虾壳中甲壳素的提取效果。对提取的几丁质纯度和理化性质与传统化学提取法和市售几丁质进行了比较。结果表明,氯化胆碱-甘油(ChCl-Gl)用量为1:2,柠檬酸用量为5% w/v (CG2-5%)时,甲壳素纯度最高,为99.22%。此外,提取的几丁质分子量为3.75 × 105 Da,结晶度指数为81.34%,略高于常规方法提取的几丁质(3.24 × 105 Da, 73.59%)。而CG2-5%提取的几丁质与市售几丁质差异不显著。这表明,在CG2-5%的萃取过程中,生物聚合物的结构保持完整。扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和x射线衍射分析(XRD)证实,虎对虾壳中的α-几丁质与商品虾壳中的几丁质相似。这些结果表明,在不使用潜在有害化学物质的情况下,CG2-5%可以有效地提高从各种原料生物质中提取甲壳素的效率,而不会损害聚合物的结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of Chitin from Giant Tiger Prawn (Penaeus monodon) Shrimp Shell Using Deep Eutectic Solvents and Citric Acid
Chitin, a natural biomass resource, has shown great promise for a wide range of applications because of its high bioactivity. This study evaluated the effectiveness of deep eutectic solvents (DESs) mixed with citric acid as a method for extracting chitin from the shells of giant tiger prawn shrimps (Penaeus monodon). The purity and physicochemical properties of the extracted chitin were compared with those obtained using the traditional chemical extraction method and commercial chitin. The results showed that the highest chitin purity (99.22%) was achieved when choline chloride-glycerol (ChCl–Gl) was used in a 1:2 molar ratio with a citric acid content of 5% w/v (CG2-5%). Additionally, the extracted chitin had a molecular weight of 3.75 × 105 Da and a crystallinity index of 81.34%, which was slightly higher than that of chitin extracted using the conventional method (3.24 × 105 Da and 73.59%). However, there was no significant difference between chitin extracted by CG2-5% and commercial chitin. This suggests that the structure of the biopolymer remained intact following the CG2-5% extraction process. The α-chitins in tiger prawn shrimp shells, as confirmed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray Diffraction Analysis (XRD), are analogous to commercial shrimp chitin. These results, achieved without employing potentially harmful chemicals, demonstrate that CG2-5% can efficiently enhance chitin extraction from diverse raw biomass sources without jeopardizing the polymer's structural stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
期刊最新文献
Nanostructured Composites: Modelling for Tailored Industrial Application Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1