{"title":"北方典型果树剪枝废弃物热解制备生物炭及其理化性质研究","authors":"Xuelei Liu, Xueyong Ren, Jiangchuan Dong, Bowei Wang, Jianli Gao, Ruijiang Wang, Jingjing Yao, Wenbo Cao","doi":"10.15376/biores.18.4.8536-8556","DOIUrl":null,"url":null,"abstract":"Routine maintenance of fruit trees generates a substantial quantity of pruning waste each year. This waste is potential feedstock for producing energy, materials, and other products. The feasibility of making biochar from the waste via pyrolysis was evaluated. The effects of seven tree species, different pruning sites, and temperature on the pyrolysis process, and the physicochemical properties of the biochar were studied. Pyrolysis of different tree species at 500 °C yielded 27.5 to 33.3% biochar, with a high calorific value (approximately 30 MJ/kg), low ash content (approximately 4%), and capturing up to 60% of the carbon element present. Simultaneously, when the temperature was increased from 400 to 700 °C, the yield of biochar decreased from 35.8% to 24.3%, but the properties improved with the higher heating value rising from 29.2 to 31.3 MJ/kg and the iodine value from 234 to 252 mg/g. The biochar has a good pore structure with a specific surface area of 237 m2/g, total pore volume of 0.175 cm3/g, and average pore size of 2.96 nm. In general, biochar from the pyrolysis of fruitwood pruning waste generated here could be an ideal feedstock to produce high-value-added products, such as solid fuels, activated carbon, and electrode materials.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"164 ","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and physicochemical properties of biochar from the pyrolysis of pruning waste of typical fruit tree in north China\",\"authors\":\"Xuelei Liu, Xueyong Ren, Jiangchuan Dong, Bowei Wang, Jianli Gao, Ruijiang Wang, Jingjing Yao, Wenbo Cao\",\"doi\":\"10.15376/biores.18.4.8536-8556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Routine maintenance of fruit trees generates a substantial quantity of pruning waste each year. This waste is potential feedstock for producing energy, materials, and other products. The feasibility of making biochar from the waste via pyrolysis was evaluated. The effects of seven tree species, different pruning sites, and temperature on the pyrolysis process, and the physicochemical properties of the biochar were studied. Pyrolysis of different tree species at 500 °C yielded 27.5 to 33.3% biochar, with a high calorific value (approximately 30 MJ/kg), low ash content (approximately 4%), and capturing up to 60% of the carbon element present. Simultaneously, when the temperature was increased from 400 to 700 °C, the yield of biochar decreased from 35.8% to 24.3%, but the properties improved with the higher heating value rising from 29.2 to 31.3 MJ/kg and the iodine value from 234 to 252 mg/g. The biochar has a good pore structure with a specific surface area of 237 m2/g, total pore volume of 0.175 cm3/g, and average pore size of 2.96 nm. In general, biochar from the pyrolysis of fruitwood pruning waste generated here could be an ideal feedstock to produce high-value-added products, such as solid fuels, activated carbon, and electrode materials.\",\"PeriodicalId\":9172,\"journal\":{\"name\":\"Bioresources\",\"volume\":\"164 \",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.18.4.8536-8556\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.18.4.8536-8556","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Preparation and physicochemical properties of biochar from the pyrolysis of pruning waste of typical fruit tree in north China
Routine maintenance of fruit trees generates a substantial quantity of pruning waste each year. This waste is potential feedstock for producing energy, materials, and other products. The feasibility of making biochar from the waste via pyrolysis was evaluated. The effects of seven tree species, different pruning sites, and temperature on the pyrolysis process, and the physicochemical properties of the biochar were studied. Pyrolysis of different tree species at 500 °C yielded 27.5 to 33.3% biochar, with a high calorific value (approximately 30 MJ/kg), low ash content (approximately 4%), and capturing up to 60% of the carbon element present. Simultaneously, when the temperature was increased from 400 to 700 °C, the yield of biochar decreased from 35.8% to 24.3%, but the properties improved with the higher heating value rising from 29.2 to 31.3 MJ/kg and the iodine value from 234 to 252 mg/g. The biochar has a good pore structure with a specific surface area of 237 m2/g, total pore volume of 0.175 cm3/g, and average pore size of 2.96 nm. In general, biochar from the pyrolysis of fruitwood pruning waste generated here could be an ideal feedstock to produce high-value-added products, such as solid fuels, activated carbon, and electrode materials.
期刊介绍:
The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.