{"title":"原位合成bismaleimide-DDE@CCTO杂化纳米纤维填充的聚醚酰亚胺纳米复合材料改善了介电和界面性能","authors":"Peiyuan Zuo, Bowen Sun, Donglin Chen, Lianping Yuan, Yi Chen, Jingyu Lin, Qixin Zhuang","doi":"10.1049/nde2.12066","DOIUrl":null,"url":null,"abstract":"Most current research of nanocomposite dielectrics for modern electronic devices and electric equipment usually focuses more on dielectric properties while in some extent ignoring the interfacial adhesion characteristics. However, the poor interfacial adhesion frequently results in serious dielectric field distortion, which would in return impair the dielectric performance enhancement. As such, how to simultaneously achieve the excellent dielectric properties and interfacial adhesion performance in organic‐inorganic nanocomposite system is worth in‐depth investigation. To realise this aim, novel hybrid nanofibers are neatly fabricated using in situ copolymerisation reaction of bismaleimide and diamino‐diphenyl ether monomers on the CCTO nanofiller surface via covalent bond connections. The resulting nanocomposites achieve high dielectric constant (9.3) and low dielectric loss (0.0185) at 1 kHz. The BMI‐DDE@CCTO/PEI yields a high discharge energy density (3.09 J/cm3) at moderate electric field (200 MV/m). Noticeably, the nanocomposites enable stable dielectric performance over a wide temperature range from room temperature to 150°C. Moreover, the binding energy for BMI‐DDE and PEI is 1052 kJ/mol according to DFT calculation. As such, the authors speculate this interesting study would inspire the broad researchers devoting to investigating bismaleimide‐coated high‐aspect‐ratio nanofillers and their dielectric materials for collaboratively improved dielectric and interfacial performance.","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12066","citationCount":"0","resultStr":"{\"title\":\"Polyetherimide nanocomposites filled with in-situ synthesised bismaleimide-DDE@CCTO hybrid nanofibers enabling improved dielectric and interfacial performance\",\"authors\":\"Peiyuan Zuo, Bowen Sun, Donglin Chen, Lianping Yuan, Yi Chen, Jingyu Lin, Qixin Zhuang\",\"doi\":\"10.1049/nde2.12066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most current research of nanocomposite dielectrics for modern electronic devices and electric equipment usually focuses more on dielectric properties while in some extent ignoring the interfacial adhesion characteristics. However, the poor interfacial adhesion frequently results in serious dielectric field distortion, which would in return impair the dielectric performance enhancement. As such, how to simultaneously achieve the excellent dielectric properties and interfacial adhesion performance in organic‐inorganic nanocomposite system is worth in‐depth investigation. To realise this aim, novel hybrid nanofibers are neatly fabricated using in situ copolymerisation reaction of bismaleimide and diamino‐diphenyl ether monomers on the CCTO nanofiller surface via covalent bond connections. The resulting nanocomposites achieve high dielectric constant (9.3) and low dielectric loss (0.0185) at 1 kHz. The BMI‐DDE@CCTO/PEI yields a high discharge energy density (3.09 J/cm3) at moderate electric field (200 MV/m). Noticeably, the nanocomposites enable stable dielectric performance over a wide temperature range from room temperature to 150°C. Moreover, the binding energy for BMI‐DDE and PEI is 1052 kJ/mol according to DFT calculation. As such, the authors speculate this interesting study would inspire the broad researchers devoting to investigating bismaleimide‐coated high‐aspect‐ratio nanofillers and their dielectric materials for collaboratively improved dielectric and interfacial performance.\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Polyetherimide nanocomposites filled with in-situ synthesised bismaleimide-DDE@CCTO hybrid nanofibers enabling improved dielectric and interfacial performance
Most current research of nanocomposite dielectrics for modern electronic devices and electric equipment usually focuses more on dielectric properties while in some extent ignoring the interfacial adhesion characteristics. However, the poor interfacial adhesion frequently results in serious dielectric field distortion, which would in return impair the dielectric performance enhancement. As such, how to simultaneously achieve the excellent dielectric properties and interfacial adhesion performance in organic‐inorganic nanocomposite system is worth in‐depth investigation. To realise this aim, novel hybrid nanofibers are neatly fabricated using in situ copolymerisation reaction of bismaleimide and diamino‐diphenyl ether monomers on the CCTO nanofiller surface via covalent bond connections. The resulting nanocomposites achieve high dielectric constant (9.3) and low dielectric loss (0.0185) at 1 kHz. The BMI‐DDE@CCTO/PEI yields a high discharge energy density (3.09 J/cm3) at moderate electric field (200 MV/m). Noticeably, the nanocomposites enable stable dielectric performance over a wide temperature range from room temperature to 150°C. Moreover, the binding energy for BMI‐DDE and PEI is 1052 kJ/mol according to DFT calculation. As such, the authors speculate this interesting study would inspire the broad researchers devoting to investigating bismaleimide‐coated high‐aspect‐ratio nanofillers and their dielectric materials for collaboratively improved dielectric and interfacial performance.