{"title":"射流电化学加工的数值模拟与实验设计方法","authors":"Ali Mehrvar, Mohsen Motamedi, Abouzar Jamalpour","doi":"10.24200/sci.2023.60185.6650","DOIUrl":null,"url":null,"abstract":"Modeling and determining the optimal conditions for the jet electrochemical machining (Jet-ECM) process is critical. In this study, a hybrid approach combining numerical and design of experiments (DOE) methods have been applied to model and determine the optimal conditions for Jet-ECM. The voltage (V), inner tool diameter (I), initial machining gap (G), and electrolyte conductivity (C) are considered input variables. Additionally, dimensional accuracy (E) and machining depth (D) are response variables. Twenty-seven numerical simulations have been performed using the Box–Behnken design to implement the response surface methodology (RSM). Consequently, two mathematical models have been obtained for these response variables. The effects of the input variables on the response variables are investigated using statistical techniques such as variance analysis. Furthermore, the desirability function approach has been applied to determine the optimal conditions for dimensional accuracy and depth of machining. The results show that the optimal values for achieving maximum depth of machining while maintaining a dimensional accuracy of 0.05 mm are as follows: electrolyte conductivity of 8 S/m, voltage of 36.9 V, initial machining gap of 200 μm, and inner tool diameter of 0.4 mm.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"33 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Jet Electrochemical Machining Using Numerical and Design of Experiments Methods\",\"authors\":\"Ali Mehrvar, Mohsen Motamedi, Abouzar Jamalpour\",\"doi\":\"10.24200/sci.2023.60185.6650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and determining the optimal conditions for the jet electrochemical machining (Jet-ECM) process is critical. In this study, a hybrid approach combining numerical and design of experiments (DOE) methods have been applied to model and determine the optimal conditions for Jet-ECM. The voltage (V), inner tool diameter (I), initial machining gap (G), and electrolyte conductivity (C) are considered input variables. Additionally, dimensional accuracy (E) and machining depth (D) are response variables. Twenty-seven numerical simulations have been performed using the Box–Behnken design to implement the response surface methodology (RSM). Consequently, two mathematical models have been obtained for these response variables. The effects of the input variables on the response variables are investigated using statistical techniques such as variance analysis. Furthermore, the desirability function approach has been applied to determine the optimal conditions for dimensional accuracy and depth of machining. The results show that the optimal values for achieving maximum depth of machining while maintaining a dimensional accuracy of 0.05 mm are as follows: electrolyte conductivity of 8 S/m, voltage of 36.9 V, initial machining gap of 200 μm, and inner tool diameter of 0.4 mm.\",\"PeriodicalId\":21605,\"journal\":{\"name\":\"Scientia Iranica\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Iranica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.60185.6650\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.60185.6650","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling of Jet Electrochemical Machining Using Numerical and Design of Experiments Methods
Modeling and determining the optimal conditions for the jet electrochemical machining (Jet-ECM) process is critical. In this study, a hybrid approach combining numerical and design of experiments (DOE) methods have been applied to model and determine the optimal conditions for Jet-ECM. The voltage (V), inner tool diameter (I), initial machining gap (G), and electrolyte conductivity (C) are considered input variables. Additionally, dimensional accuracy (E) and machining depth (D) are response variables. Twenty-seven numerical simulations have been performed using the Box–Behnken design to implement the response surface methodology (RSM). Consequently, two mathematical models have been obtained for these response variables. The effects of the input variables on the response variables are investigated using statistical techniques such as variance analysis. Furthermore, the desirability function approach has been applied to determine the optimal conditions for dimensional accuracy and depth of machining. The results show that the optimal values for achieving maximum depth of machining while maintaining a dimensional accuracy of 0.05 mm are as follows: electrolyte conductivity of 8 S/m, voltage of 36.9 V, initial machining gap of 200 μm, and inner tool diameter of 0.4 mm.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.