{"title":"一种推导紧凸低估量(有时是包络)的新技术","authors":"M. Locatelli","doi":"10.1007/s10589-023-00534-8","DOIUrl":null,"url":null,"abstract":"Abstract The convex envelope value for a given function f over a region X at some point $$\\textbf{x}\\in X$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> can be derived by searching for the largest value at that point among affine underestimators of f over X . This can be computed by solving a maximin problem, whose exact computation, however, may be a hard task. In this paper we show that by relaxation of the inner minimization problem, duality, and, in particular, by an enlargement of the class of underestimators (thus, not only affine ones) an easier derivation of good convex understimating functions, which can also be proved to be convex envelopes in some cases, is possible. The proposed approach is mainly applied to the derivation of convex underestimators (in fact, in some cases, convex envelopes) in the quadratic case. However, some results are also presented for polynomial, ratio of polynomials, and some other separable functions over regions defined by similarly defined separable functions.","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new technique to derive tight convex underestimators (sometimes envelopes)\",\"authors\":\"M. Locatelli\",\"doi\":\"10.1007/s10589-023-00534-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The convex envelope value for a given function f over a region X at some point $$\\\\textbf{x}\\\\in X$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> can be derived by searching for the largest value at that point among affine underestimators of f over X . This can be computed by solving a maximin problem, whose exact computation, however, may be a hard task. In this paper we show that by relaxation of the inner minimization problem, duality, and, in particular, by an enlargement of the class of underestimators (thus, not only affine ones) an easier derivation of good convex understimating functions, which can also be proved to be convex envelopes in some cases, is possible. The proposed approach is mainly applied to the derivation of convex underestimators (in fact, in some cases, convex envelopes) in the quadratic case. However, some results are also presented for polynomial, ratio of polynomials, and some other separable functions over regions defined by similarly defined separable functions.\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00534-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10589-023-00534-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new technique to derive tight convex underestimators (sometimes envelopes)
Abstract The convex envelope value for a given function f over a region X at some point $$\textbf{x}\in X$$ x∈X can be derived by searching for the largest value at that point among affine underestimators of f over X . This can be computed by solving a maximin problem, whose exact computation, however, may be a hard task. In this paper we show that by relaxation of the inner minimization problem, duality, and, in particular, by an enlargement of the class of underestimators (thus, not only affine ones) an easier derivation of good convex understimating functions, which can also be proved to be convex envelopes in some cases, is possible. The proposed approach is mainly applied to the derivation of convex underestimators (in fact, in some cases, convex envelopes) in the quadratic case. However, some results are also presented for polynomial, ratio of polynomials, and some other separable functions over regions defined by similarly defined separable functions.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.