一种具有自愈性和抗冻性的分子链诱导的基于聚丙烯酰胺的水凝胶电解质

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-24 DOI:10.1016/j.jechem.2023.10.017
Haiyang Liao , Wenzhao Zhong , Chen Li , Jieling Han , Xiao Sun , Xinhui Xia , Ting Li , Abolhassan Noori , Mir F. Mousavi , Xin Liu , Yongqi Zhang
{"title":"一种具有自愈性和抗冻性的分子链诱导的基于聚丙烯酰胺的水凝胶电解质","authors":"Haiyang Liao ,&nbsp;Wenzhao Zhong ,&nbsp;Chen Li ,&nbsp;Jieling Han ,&nbsp;Xiao Sun ,&nbsp;Xinhui Xia ,&nbsp;Ting Li ,&nbsp;Abolhassan Noori ,&nbsp;Mir F. Mousavi ,&nbsp;Xin Liu ,&nbsp;Yongqi Zhang","doi":"10.1016/j.jechem.2023.10.017","DOIUrl":null,"url":null,"abstract":"<div><p>The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory, it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions. Herein, we design a new hydrogel electrolyte (AF/SH-Hydrogel) with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules, dynamic chemical bonding (disulfide bond), and supramolecular interaction (multi-hydrogen bond) into the polyacrylamide molecular chain. Thanks to the exceptional freeze resistance (84% capacity retention at −20 °C) and intrinsic self-healing capabilities (95% capacity retention after 5 cutting/self-healing cycles), the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications. The Zn||AF/SH-Hydrogel||MnO<sub>2</sub> device offers a near-theoretical specific capacity of 285 mA h g<sup>−1</sup> at 0.1 A g<sup>−1</sup> (Coulombic efficiency ≈100%), as well as good self-healing capability and mechanical flexibility in an ice bath. This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 565-578"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries\",\"authors\":\"Haiyang Liao ,&nbsp;Wenzhao Zhong ,&nbsp;Chen Li ,&nbsp;Jieling Han ,&nbsp;Xiao Sun ,&nbsp;Xinhui Xia ,&nbsp;Ting Li ,&nbsp;Abolhassan Noori ,&nbsp;Mir F. Mousavi ,&nbsp;Xin Liu ,&nbsp;Yongqi Zhang\",\"doi\":\"10.1016/j.jechem.2023.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory, it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions. Herein, we design a new hydrogel electrolyte (AF/SH-Hydrogel) with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules, dynamic chemical bonding (disulfide bond), and supramolecular interaction (multi-hydrogen bond) into the polyacrylamide molecular chain. Thanks to the exceptional freeze resistance (84% capacity retention at −20 °C) and intrinsic self-healing capabilities (95% capacity retention after 5 cutting/self-healing cycles), the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications. The Zn||AF/SH-Hydrogel||MnO<sub>2</sub> device offers a near-theoretical specific capacity of 285 mA h g<sup>−1</sup> at 0.1 A g<sup>−1</sup> (Coulombic efficiency ≈100%), as well as good self-healing capability and mechanical flexibility in an ice bath. This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 565-578\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005855\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005855","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶的防冻策略与其自愈结构往往是矛盾的,突破分子结构,设计和构建具有内在防冻/自愈特性的水凝胶,以满足灵活可穿戴设备在多样化使用条件下的快速发展,是至关重要的。本文通过在聚丙烯酰胺分子链中引入乙二醇分子、动态化学键(二硫键)和超分子相互作用(多氢键),设计了一种具有抗冻/自愈能力的新型水凝胶电解质(AF/SH-Hydrogel)。由于优异的抗冻性(在- 20°C下保持84%的容量)和内在的自修复能力(在5次切割/自修复循环后保持95%的容量),获得的AF/ sh -水凝胶使锌||二氧化锰电池成为最先进应用中经济可行的电池。Zn| AF/SH-Hydrogel| MnO2器件在0.1 a g−1下具有接近理论的285 mA h g−1比容量(库仑效率≈100%),并且具有良好的自愈能力和冰浴中的机械灵活性。这项工作为开发多功能水凝胶电解质提供了见解,可用于下一代自愈和抗冻智能水储能装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries

The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory, it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions. Herein, we design a new hydrogel electrolyte (AF/SH-Hydrogel) with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules, dynamic chemical bonding (disulfide bond), and supramolecular interaction (multi-hydrogen bond) into the polyacrylamide molecular chain. Thanks to the exceptional freeze resistance (84% capacity retention at −20 °C) and intrinsic self-healing capabilities (95% capacity retention after 5 cutting/self-healing cycles), the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications. The Zn||AF/SH-Hydrogel||MnO2 device offers a near-theoretical specific capacity of 285 mA h g−1 at 0.1 A g−1 (Coulombic efficiency ≈100%), as well as good self-healing capability and mechanical flexibility in an ice bath. This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1