Haiyang Liao , Wenzhao Zhong , Chen Li , Jieling Han , Xiao Sun , Xinhui Xia , Ting Li , Abolhassan Noori , Mir F. Mousavi , Xin Liu , Yongqi Zhang
{"title":"一种具有自愈性和抗冻性的分子链诱导的基于聚丙烯酰胺的水凝胶电解质","authors":"Haiyang Liao , Wenzhao Zhong , Chen Li , Jieling Han , Xiao Sun , Xinhui Xia , Ting Li , Abolhassan Noori , Mir F. Mousavi , Xin Liu , Yongqi Zhang","doi":"10.1016/j.jechem.2023.10.017","DOIUrl":null,"url":null,"abstract":"<div><p>The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory, it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions. Herein, we design a new hydrogel electrolyte (AF/SH-Hydrogel) with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules, dynamic chemical bonding (disulfide bond), and supramolecular interaction (multi-hydrogen bond) into the polyacrylamide molecular chain. Thanks to the exceptional freeze resistance (84% capacity retention at −20 °C) and intrinsic self-healing capabilities (95% capacity retention after 5 cutting/self-healing cycles), the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications. The Zn||AF/SH-Hydrogel||MnO<sub>2</sub> device offers a near-theoretical specific capacity of 285 mA h g<sup>−1</sup> at 0.1 A g<sup>−1</sup> (Coulombic efficiency ≈100%), as well as good self-healing capability and mechanical flexibility in an ice bath. This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 565-578"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries\",\"authors\":\"Haiyang Liao , Wenzhao Zhong , Chen Li , Jieling Han , Xiao Sun , Xinhui Xia , Ting Li , Abolhassan Noori , Mir F. Mousavi , Xin Liu , Yongqi Zhang\",\"doi\":\"10.1016/j.jechem.2023.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory, it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions. Herein, we design a new hydrogel electrolyte (AF/SH-Hydrogel) with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules, dynamic chemical bonding (disulfide bond), and supramolecular interaction (multi-hydrogen bond) into the polyacrylamide molecular chain. Thanks to the exceptional freeze resistance (84% capacity retention at −20 °C) and intrinsic self-healing capabilities (95% capacity retention after 5 cutting/self-healing cycles), the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications. The Zn||AF/SH-Hydrogel||MnO<sub>2</sub> device offers a near-theoretical specific capacity of 285 mA h g<sup>−1</sup> at 0.1 A g<sup>−1</sup> (Coulombic efficiency ≈100%), as well as good self-healing capability and mechanical flexibility in an ice bath. This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 565-578\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005855\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005855","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
水凝胶的防冻策略与其自愈结构往往是矛盾的,突破分子结构,设计和构建具有内在防冻/自愈特性的水凝胶,以满足灵活可穿戴设备在多样化使用条件下的快速发展,是至关重要的。本文通过在聚丙烯酰胺分子链中引入乙二醇分子、动态化学键(二硫键)和超分子相互作用(多氢键),设计了一种具有抗冻/自愈能力的新型水凝胶电解质(AF/SH-Hydrogel)。由于优异的抗冻性(在- 20°C下保持84%的容量)和内在的自修复能力(在5次切割/自修复循环后保持95%的容量),获得的AF/ sh -水凝胶使锌||二氧化锰电池成为最先进应用中经济可行的电池。Zn| AF/SH-Hydrogel| MnO2器件在0.1 a g−1下具有接近理论的285 mA h g−1比容量(库仑效率≈100%),并且具有良好的自愈能力和冰浴中的机械灵活性。这项工作为开发多功能水凝胶电解质提供了见解,可用于下一代自愈和抗冻智能水储能装置。
An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory, it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions. Herein, we design a new hydrogel electrolyte (AF/SH-Hydrogel) with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules, dynamic chemical bonding (disulfide bond), and supramolecular interaction (multi-hydrogen bond) into the polyacrylamide molecular chain. Thanks to the exceptional freeze resistance (84% capacity retention at −20 °C) and intrinsic self-healing capabilities (95% capacity retention after 5 cutting/self-healing cycles), the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications. The Zn||AF/SH-Hydrogel||MnO2 device offers a near-theoretical specific capacity of 285 mA h g−1 at 0.1 A g−1 (Coulombic efficiency ≈100%), as well as good self-healing capability and mechanical flexibility in an ice bath. This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.