Xiaomei Zheng, Yongqing Wang, Guohong Du, Shaoshuai Yin
{"title":"基于3D打印物体外观获取的快速多频相位展开方法","authors":"Xiaomei Zheng, Yongqing Wang, Guohong Du, Shaoshuai Yin","doi":"10.1089/3dp.2023.0166","DOIUrl":null,"url":null,"abstract":"3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed. By performing standard image acquisition of 3D printed objects that are not limited to materials and sampling locations, the surface shape and texture details of the objects can be accurately reconstructed using this method, independent of ambient light, with high robustness. Compared with the conventional multifrequency method, the required projection pattern is reduced from 12 to 9 and the overall measurement efficiency is improved by 25%, while maintaining the advantages of the independent pixel calculation method of the multifrequency method. In addition, the effectiveness of the method is experimentally verified by complex surface reconstruction experiments and plaster model experiments, which provide accurate measurement accuracy with high efficiency and precision. Therefore, the method can provide accurate measurements for 3D printed objects.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"39 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Multifrequency Phase Unwrapping Method Based on 3D Printing Object Appearance Acquisition\",\"authors\":\"Xiaomei Zheng, Yongqing Wang, Guohong Du, Shaoshuai Yin\",\"doi\":\"10.1089/3dp.2023.0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed. By performing standard image acquisition of 3D printed objects that are not limited to materials and sampling locations, the surface shape and texture details of the objects can be accurately reconstructed using this method, independent of ambient light, with high robustness. Compared with the conventional multifrequency method, the required projection pattern is reduced from 12 to 9 and the overall measurement efficiency is improved by 25%, while maintaining the advantages of the independent pixel calculation method of the multifrequency method. In addition, the effectiveness of the method is experimentally verified by complex surface reconstruction experiments and plaster model experiments, which provide accurate measurement accuracy with high efficiency and precision. Therefore, the method can provide accurate measurements for 3D printed objects.\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2023.0166\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0166","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Fast Multifrequency Phase Unwrapping Method Based on 3D Printing Object Appearance Acquisition
3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed. By performing standard image acquisition of 3D printed objects that are not limited to materials and sampling locations, the surface shape and texture details of the objects can be accurately reconstructed using this method, independent of ambient light, with high robustness. Compared with the conventional multifrequency method, the required projection pattern is reduced from 12 to 9 and the overall measurement efficiency is improved by 25%, while maintaining the advantages of the independent pixel calculation method of the multifrequency method. In addition, the effectiveness of the method is experimentally verified by complex surface reconstruction experiments and plaster model experiments, which provide accurate measurement accuracy with high efficiency and precision. Therefore, the method can provide accurate measurements for 3D printed objects.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.