复杂地质环境下局部水文地质下降触发的盖顶CBP墙系统土壤-结构相互作用

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Geosciences (Switzerland) Pub Date : 2023-10-11 DOI:10.3390/geosciences13100304
Dominic Ek Leong Ong, Elizabeth Eu Mee Chong
{"title":"复杂地质环境下局部水文地质下降触发的盖顶CBP墙系统土壤-结构相互作用","authors":"Dominic Ek Leong Ong, Elizabeth Eu Mee Chong","doi":"10.3390/geosciences13100304","DOIUrl":null,"url":null,"abstract":"Retaining walls are often used to construct basements and underground station boxes. This unique case study compares the field-measured contiguous bored pile (CBP) wall, surrounding geology, and hydrogeology or groundwater responses against the results using 2D and 3D numerical back analyses of a deep excavation project that experienced localized groundwater drawdown through the leaking ground anchor points. Site observations indicated that the ground anchor installation works had caused larger than expected through-the-wall leakages that subsequently triggered nearby ground and building settlements. In order to study the complex soil–structure interaction behavior, back analyses using a hybrid modeling technique of through-the-wall transient hydrogeological seepage and geomaterial stress-strain analyses was implemented. Through these soil-structure interaction back analyses, it was evidently revealed that the presence of the continuous capping beam was key in providing pile head restraints against the active earth pressures when the groundwater was depressed, as well as efficiently distributing the beneficial wall corner effects towards the middle CBP wall, leading to smaller bending moment magnitudes, characterized by their ‘S-shaped’ profiles. This behavior had been correctly diagnosed, as opposed to the ‘D-shaped’ bending moment profile usually only seen in a typical free-head cantilever wall in similar geology. The eventual results show that the wall and ground responses, i.e., deflection, bending moment, and settlement, were reasonably well predicted when compared against the instrumented field data, thus validating the reliability of the geotechnical modeling technique, key geological parameters, and hydrogeological fluctuations adopted in the 2D and 3D numerical models, as well as the beneficial contributions of the continuous capping beam, which tend to be overlooked during routine retaining wall design.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil–Structure Interactions in a Capped CBP Wall System Triggered by Localized Hydrogeological Drawdown in a Complex Geological Setting\",\"authors\":\"Dominic Ek Leong Ong, Elizabeth Eu Mee Chong\",\"doi\":\"10.3390/geosciences13100304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retaining walls are often used to construct basements and underground station boxes. This unique case study compares the field-measured contiguous bored pile (CBP) wall, surrounding geology, and hydrogeology or groundwater responses against the results using 2D and 3D numerical back analyses of a deep excavation project that experienced localized groundwater drawdown through the leaking ground anchor points. Site observations indicated that the ground anchor installation works had caused larger than expected through-the-wall leakages that subsequently triggered nearby ground and building settlements. In order to study the complex soil–structure interaction behavior, back analyses using a hybrid modeling technique of through-the-wall transient hydrogeological seepage and geomaterial stress-strain analyses was implemented. Through these soil-structure interaction back analyses, it was evidently revealed that the presence of the continuous capping beam was key in providing pile head restraints against the active earth pressures when the groundwater was depressed, as well as efficiently distributing the beneficial wall corner effects towards the middle CBP wall, leading to smaller bending moment magnitudes, characterized by their ‘S-shaped’ profiles. This behavior had been correctly diagnosed, as opposed to the ‘D-shaped’ bending moment profile usually only seen in a typical free-head cantilever wall in similar geology. The eventual results show that the wall and ground responses, i.e., deflection, bending moment, and settlement, were reasonably well predicted when compared against the instrumented field data, thus validating the reliability of the geotechnical modeling technique, key geological parameters, and hydrogeological fluctuations adopted in the 2D and 3D numerical models, as well as the beneficial contributions of the continuous capping beam, which tend to be overlooked during routine retaining wall design.\",\"PeriodicalId\":38189,\"journal\":{\"name\":\"Geosciences (Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosciences (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geosciences13100304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences13100304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

挡土墙常用于建造地下室和地下车站箱体。这个独特的案例研究将现场测量的连续钻孔桩(CBP)墙、周围地质、水文地质或地下水响应与深基坑项目的2D和3D数值反分析结果进行了比较,该项目通过泄漏的地面锚点经历了局部地下水的下降。现场观察显示,地锚安装工程造成比预期更大的穿墙渗漏,随后引发附近的地面和建筑物沉降。为了研究复杂的土-结构相互作用行为,采用穿墙瞬态水文地质渗流和岩土应力-应变分析混合建模技术进行了反分析。通过这些土-结构相互作用反分析,可以清楚地发现,连续顶梁的存在是在地下水被压抑时提供桩顶约束以抵抗主动土压力的关键,并且有效地将有益的墙角效应分配给中间的CBP墙,从而导致较小的弯矩值,其特征为“s”型。这种行为被正确地诊断出来,而不是“d形”弯矩曲线,通常只在类似地质条件下的典型自由悬臂墙中看到。最终结果表明,与现场实测数据相比,墙体和地面的挠度、弯矩和沉降响应得到了较好的预测,从而验证了二维和三维数值模型中采用的岩土建模技术、关键地质参数和水文地质波动的可靠性,以及连续顶梁的有益贡献。这些在常规挡土墙设计中往往被忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soil–Structure Interactions in a Capped CBP Wall System Triggered by Localized Hydrogeological Drawdown in a Complex Geological Setting
Retaining walls are often used to construct basements and underground station boxes. This unique case study compares the field-measured contiguous bored pile (CBP) wall, surrounding geology, and hydrogeology or groundwater responses against the results using 2D and 3D numerical back analyses of a deep excavation project that experienced localized groundwater drawdown through the leaking ground anchor points. Site observations indicated that the ground anchor installation works had caused larger than expected through-the-wall leakages that subsequently triggered nearby ground and building settlements. In order to study the complex soil–structure interaction behavior, back analyses using a hybrid modeling technique of through-the-wall transient hydrogeological seepage and geomaterial stress-strain analyses was implemented. Through these soil-structure interaction back analyses, it was evidently revealed that the presence of the continuous capping beam was key in providing pile head restraints against the active earth pressures when the groundwater was depressed, as well as efficiently distributing the beneficial wall corner effects towards the middle CBP wall, leading to smaller bending moment magnitudes, characterized by their ‘S-shaped’ profiles. This behavior had been correctly diagnosed, as opposed to the ‘D-shaped’ bending moment profile usually only seen in a typical free-head cantilever wall in similar geology. The eventual results show that the wall and ground responses, i.e., deflection, bending moment, and settlement, were reasonably well predicted when compared against the instrumented field data, thus validating the reliability of the geotechnical modeling technique, key geological parameters, and hydrogeological fluctuations adopted in the 2D and 3D numerical models, as well as the beneficial contributions of the continuous capping beam, which tend to be overlooked during routine retaining wall design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosciences (Switzerland)
Geosciences (Switzerland) Earth and Planetary Sciences-Earth and Planetary Sciences (all)
CiteScore
5.30
自引率
7.40%
发文量
395
审稿时长
11 weeks
期刊最新文献
Comparison of Rating Systems for Alberta Rock Slopes, and Assessment of Applicability for Geotechnical Asset Management Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils Heterogeneities in the Cohesion of the Deposits of the 2021 Tajogaite Eruption of La Palma (Canary Islands, Spain) Understanding the Deep Structure of the Essaouira Basin Using Gravity Data: Hydrogeological Inferences for a Semiarid Region in Central-Western Morocco Using Electrical Resistivity Tomography Method to Determine the Inner 3D Geometry and the Main Runoff Directions of the Large Active Landslide of Pie de Cuesta in the Vítor Valley (Peru)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1