无模型时间序列预测:一种非参数方法

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Nonparametric Statistics Pub Date : 2023-10-11 DOI:10.1080/10485252.2023.2266740
Mohammad Mohammadi, Meng Li
{"title":"无模型时间序列预测:一种非参数方法","authors":"Mohammad Mohammadi, Meng Li","doi":"10.1080/10485252.2023.2266740","DOIUrl":null,"url":null,"abstract":"AbstractWe propose a novel approach for model-free time series forecasting. Unlike most existing methods, the proposed method does not rely on parametric error distributions nor assume parametric forms of the mean function, leading to broad applicability. We achieve such generality by establishing a simple but powerful representation of a time series {Xt;t∈Z} with suptE|Xt|<∞, that is, Xt has a solution which is a linear combination of infinite past values. Then using the obtained solution a prediction algorithm is presented, with large sample theoretical guarantees. Simulation studies show favourable performance of the proposed method compared with popular parametric and neural networks methods, and suggest its superiority when the sample size is small. An application to practical time series is discussed.Keywords: Predictionnonparametric methodsneural networksα-stable distributionMSC2010 subject classifications:: Primary: 60G25Secondary: 62M20 Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 See https://www.sciencedirect.com/topics/engineering/left-inverse.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"107 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-free prediction of time series: a nonparametric approach\",\"authors\":\"Mohammad Mohammadi, Meng Li\",\"doi\":\"10.1080/10485252.2023.2266740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractWe propose a novel approach for model-free time series forecasting. Unlike most existing methods, the proposed method does not rely on parametric error distributions nor assume parametric forms of the mean function, leading to broad applicability. We achieve such generality by establishing a simple but powerful representation of a time series {Xt;t∈Z} with suptE|Xt|<∞, that is, Xt has a solution which is a linear combination of infinite past values. Then using the obtained solution a prediction algorithm is presented, with large sample theoretical guarantees. Simulation studies show favourable performance of the proposed method compared with popular parametric and neural networks methods, and suggest its superiority when the sample size is small. An application to practical time series is discussed.Keywords: Predictionnonparametric methodsneural networksα-stable distributionMSC2010 subject classifications:: Primary: 60G25Secondary: 62M20 Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 See https://www.sciencedirect.com/topics/engineering/left-inverse.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2023.2266740\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2266740","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种新的无模型时间序列预测方法。与大多数现有方法不同,该方法不依赖于参数误差分布,也不假设均值函数的参数形式,具有广泛的适用性。我们通过建立一个简单而强大的时间序列{Xt;t∈Z}的表示,suptE|Xt|<∞,即Xt有一个解是无限个过去值的线性组合,从而实现了这种普遍性。然后利用得到的解给出了一种具有大样本理论保证的预测算法。仿真研究表明,与常用的参数网络和神经网络方法相比,该方法具有良好的性能,并且在样本容量较小的情况下具有优越性。讨论了该方法在实际时间序列中的应用。关键词:预测非参数方法神经网络α-稳定分布msc2010学科分类:初级:60g25次级:62M20披露声明作者未报告潜在利益冲突。注1参见https://www.sciencedirect.com/topics/engineering/left-inverse。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-free prediction of time series: a nonparametric approach
AbstractWe propose a novel approach for model-free time series forecasting. Unlike most existing methods, the proposed method does not rely on parametric error distributions nor assume parametric forms of the mean function, leading to broad applicability. We achieve such generality by establishing a simple but powerful representation of a time series {Xt;t∈Z} with suptE|Xt|<∞, that is, Xt has a solution which is a linear combination of infinite past values. Then using the obtained solution a prediction algorithm is presented, with large sample theoretical guarantees. Simulation studies show favourable performance of the proposed method compared with popular parametric and neural networks methods, and suggest its superiority when the sample size is small. An application to practical time series is discussed.Keywords: Predictionnonparametric methodsneural networksα-stable distributionMSC2010 subject classifications:: Primary: 60G25Secondary: 62M20 Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 See https://www.sciencedirect.com/topics/engineering/left-inverse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
期刊最新文献
Adaptive and efficient isotonic estimation in Wicksell's problem A general semi-parametric elliptical distribution model for semi-supervised learning Stone's theorem for distributional regression in Wasserstein distance Kernel density estimation for a stochastic process with values in a Riemannian manifold Functional index coefficient models for locally stationary time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1