dianqiang su, Yuan Jiang, Pablo Solano, Luis Orozco, John Lawall, yanting zhao
{"title":"光电反馈冷却的一个5毫米长的扭转模式","authors":"dianqiang su, Yuan Jiang, Pablo Solano, Luis Orozco, John Lawall, yanting zhao","doi":"10.1364/prj.487035","DOIUrl":null,"url":null,"abstract":"We report three orders of magnitude optical cooling of the fundamental torsional mode of a 5 mm-long, 550 nm diameter optical nanofiber. The rotation of the nanofiber couples to the polarization of guided laser fields. We use a weak laser probe to monitor the rotation, and use feedback to modulate the polarization of an auxiliary drive laser providing torque. Our results present a tool for the optomechanical control of large-scale torsional resonators, with metrological applications and potential implications for studying macroscopic objects in quantum states.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"2 1","pages":"0"},"PeriodicalIF":6.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optomechanical feedback cooling of a 5 mm long torsional mode\",\"authors\":\"dianqiang su, Yuan Jiang, Pablo Solano, Luis Orozco, John Lawall, yanting zhao\",\"doi\":\"10.1364/prj.487035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report three orders of magnitude optical cooling of the fundamental torsional mode of a 5 mm-long, 550 nm diameter optical nanofiber. The rotation of the nanofiber couples to the polarization of guided laser fields. We use a weak laser probe to monitor the rotation, and use feedback to modulate the polarization of an auxiliary drive laser providing torque. Our results present a tool for the optomechanical control of large-scale torsional resonators, with metrological applications and potential implications for studying macroscopic objects in quantum states.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.487035\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/prj.487035","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Optomechanical feedback cooling of a 5 mm long torsional mode
We report three orders of magnitude optical cooling of the fundamental torsional mode of a 5 mm-long, 550 nm diameter optical nanofiber. The rotation of the nanofiber couples to the polarization of guided laser fields. We use a weak laser probe to monitor the rotation, and use feedback to modulate the polarization of an auxiliary drive laser providing torque. Our results present a tool for the optomechanical control of large-scale torsional resonators, with metrological applications and potential implications for studying macroscopic objects in quantum states.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.