植物精油对尖孢镰刀菌(OG10)杀菌剂潜力的测定

Tan Elif, Gezgincioğlu Ebru, Gülmez Özlem, Barış Özlem
{"title":"植物精油对尖孢镰刀菌(OG10)杀菌剂潜力的测定","authors":"Tan Elif, Gezgincioğlu Ebru, Gülmez Özlem, Barış Özlem","doi":"10.29328/journal.jpsp.1001114","DOIUrl":null,"url":null,"abstract":"This study aimed to determine whether the essential oils of thyme, ginger, and mint from medicinal aromatic plants can provide resistance to the pathogen Fusarium oxysporum in the maize plant. To this end, the antifungal effect of 0.1 ml, 0.25 ml, 0.5 ml, and 1 ml essential oil amounts was determined by the agar disc diffusion method. It was determined that concentrations containing 0.1, and 0.25 ml essential oil showed no antifungal effects, however, concentrations containing 0.5 and 1 ml essential oil had antifungal effects. The most effective concentration was found to be 1 ml of essential oil in all three species. The maize was grown under hydroponic conditions. Thyme, ginger, and mint essential oils (1 g/100 ml) were applied to the root medium of the grown maize plant on the 8th day. An F. oxysporum suspension containing 107 spores was applied after 24 hours and harvested 3 days later. When the reactive oxygen species (H2O2) and MDA amounts of the harvested plants were examined, it was observed that there was an increase in the population of F. oxysporum. However, applications of thyme, ginger, and mint essential oil have been observed to significantly reduce these. It was also determined that essential oils protected the plant against F. oxysporum by increasing antioxidant enzyme activities. Although these three essential oils applied have antifungal properties, it has been observed that the best effect belongs to thyme essential oil. The results show that essential oils of thyme ginger and mint can be used as potential fungicides against the pathogen F. oxysporum in maize cultivation","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Potential for use of Plant Essential Oils as a Fungicide Against Fusarium Oxysporum (OG10)\",\"authors\":\"Tan Elif, Gezgincioğlu Ebru, Gülmez Özlem, Barış Özlem\",\"doi\":\"10.29328/journal.jpsp.1001114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to determine whether the essential oils of thyme, ginger, and mint from medicinal aromatic plants can provide resistance to the pathogen Fusarium oxysporum in the maize plant. To this end, the antifungal effect of 0.1 ml, 0.25 ml, 0.5 ml, and 1 ml essential oil amounts was determined by the agar disc diffusion method. It was determined that concentrations containing 0.1, and 0.25 ml essential oil showed no antifungal effects, however, concentrations containing 0.5 and 1 ml essential oil had antifungal effects. The most effective concentration was found to be 1 ml of essential oil in all three species. The maize was grown under hydroponic conditions. Thyme, ginger, and mint essential oils (1 g/100 ml) were applied to the root medium of the grown maize plant on the 8th day. An F. oxysporum suspension containing 107 spores was applied after 24 hours and harvested 3 days later. When the reactive oxygen species (H2O2) and MDA amounts of the harvested plants were examined, it was observed that there was an increase in the population of F. oxysporum. However, applications of thyme, ginger, and mint essential oil have been observed to significantly reduce these. It was also determined that essential oils protected the plant against F. oxysporum by increasing antioxidant enzyme activities. Although these three essential oils applied have antifungal properties, it has been observed that the best effect belongs to thyme essential oil. The results show that essential oils of thyme ginger and mint can be used as potential fungicides against the pathogen F. oxysporum in maize cultivation\",\"PeriodicalId\":93470,\"journal\":{\"name\":\"Journal of plant science and phytopathology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant science and phytopathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29328/journal.jpsp.1001114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant science and phytopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29328/journal.jpsp.1001114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在研究药用芳香植物中百里香、生姜和薄荷精油是否对玉米植株中的尖孢镰刀菌具有抗性。为此,采用琼脂盘扩散法测定0.1 ml、0.25 ml、0.5 ml、1ml精油用量的抑菌效果。结果表明,0.1 ml和0.25 ml的精油浓度对真菌无抑制作用,0.5 ml和1ml的精油浓度对真菌有抑制作用。在所有三种植物中,发现最有效的浓度是1毫升精油。玉米在水培条件下生长。第8天,将百里香、生姜和薄荷精油(1 g/100 ml)施用于已生长的玉米植株的根培养基中。24小时后施用含有107个孢子的尖孢镰刀菌悬浮液,3天后收获。对收获植株的活性氧(H2O2)和丙二醛(MDA)含量进行测定,发现尖孢镰刀菌的种群数量有所增加。然而,使用百里香、生姜和薄荷精油可以显著减少这些症状。精油还通过提高抗氧化酶活性来保护植物免受尖孢镰刀菌的侵害。虽然这三种精油都具有抗真菌的特性,但据观察,百里香精油的效果最好。结果表明,百里香、生姜和薄荷精油可作为潜在的杀菌剂在玉米栽培中应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the Potential for use of Plant Essential Oils as a Fungicide Against Fusarium Oxysporum (OG10)
This study aimed to determine whether the essential oils of thyme, ginger, and mint from medicinal aromatic plants can provide resistance to the pathogen Fusarium oxysporum in the maize plant. To this end, the antifungal effect of 0.1 ml, 0.25 ml, 0.5 ml, and 1 ml essential oil amounts was determined by the agar disc diffusion method. It was determined that concentrations containing 0.1, and 0.25 ml essential oil showed no antifungal effects, however, concentrations containing 0.5 and 1 ml essential oil had antifungal effects. The most effective concentration was found to be 1 ml of essential oil in all three species. The maize was grown under hydroponic conditions. Thyme, ginger, and mint essential oils (1 g/100 ml) were applied to the root medium of the grown maize plant on the 8th day. An F. oxysporum suspension containing 107 spores was applied after 24 hours and harvested 3 days later. When the reactive oxygen species (H2O2) and MDA amounts of the harvested plants were examined, it was observed that there was an increase in the population of F. oxysporum. However, applications of thyme, ginger, and mint essential oil have been observed to significantly reduce these. It was also determined that essential oils protected the plant against F. oxysporum by increasing antioxidant enzyme activities. Although these three essential oils applied have antifungal properties, it has been observed that the best effect belongs to thyme essential oil. The results show that essential oils of thyme ginger and mint can be used as potential fungicides against the pathogen F. oxysporum in maize cultivation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melaleuca Essential Oil (Melaleuca alternifolia cheel) in the Control of Beans Diseases GS-MS Profile, Total Flavonoid and Phenolic Contents and Antioxidant Capacity of Leaves of Vitelleria paradoxa c.f. Gaertn Are Biofungicides a Means of Plant Protection for the Future? New Fungi Associated with Blackberry Root Rot (Rubus spp.), in Michoacán, Mexico Effect of Whitefly (Bemisia tabaci Genn.) Infestation on the Growth Parameters of Eggplant (Solanum melongena L.) in Kebbi State, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1