Pub Date : 2024-07-12DOI: 10.29328/journal.jpsp.1001140
Octaveus Matthieu, Franzener Gilmar, da Silva Bonome Lisandro Tomas
Bean cultivation is vital to the global food and economy, especially in Brazil. Facing challenges from diseases that affect production, it is crucial to seek new strategies to maintain productivity and sustainability. Melaleuca alternifolia, known as the tea tree due to its medicinal properties, has little explored potential in controlling diseases in bean plants. The objective of this work was to evaluate the effectiveness of tea tree essential oil in controlling diseases in bean cultivation. In vitro tests were carried out to evaluate bacterial growth, at concentrations of (0.0%, 0.05%, 0.1%, 0.5%, 1% and 2%). And antibiogram with the bacteria Xanthomonas axonopodis pv. phaseoli, in different concentrations (0.0%, 0.05%, 0.1%, 0.5%, 1%, 2% and 3%). For the fungus Pseudocercospora griseola, sporulation tests were carried out, using direct and indirect methods, at concentrations of (0.0%, 0.05%, 0.1%, 0.5%, 1%, 2%, and 3%). Furthermore, for the fungus Colletotrichum lindemuthianum, mycelial growth tests were carried out with the same concentrations. The experiments took place in vivo, with a completely randomized statistical design, involving five replications per treatment and concentrations varying from (0.0%, 0.05%, 0.1%, 0.5%, 1% and 2%). Disease incidence was assessed using a diagrammatic scale, disease severity, Area under the Disease Progress Curve (AACPD) and Area under the Incidence Progress Curve (AACPI). Melaleuca Essential Oil (EO) inhibited the development of fungi and bacteria in in vitro tests starting at 0.5%. In vivo, Melaleuca Essential Oil (EO) showed a significant reduction in the incidence and severity of the disease from 0.5% in both fungi and bacteria. Melaleuca EO can be an effective alternative for disease control in bean cultivation.
{"title":"Melaleuca Essential Oil (Melaleuca alternifolia cheel) in the Control of Beans Diseases","authors":"Octaveus Matthieu, Franzener Gilmar, da Silva Bonome Lisandro Tomas","doi":"10.29328/journal.jpsp.1001140","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001140","url":null,"abstract":"Bean cultivation is vital to the global food and economy, especially in Brazil. Facing challenges from diseases that affect production, it is crucial to seek new strategies to maintain productivity and sustainability. Melaleuca alternifolia, known as the tea tree due to its medicinal properties, has little explored potential in controlling diseases in bean plants. The objective of this work was to evaluate the effectiveness of tea tree essential oil in controlling diseases in bean cultivation. In vitro tests were carried out to evaluate bacterial growth, at concentrations of (0.0%, 0.05%, 0.1%, 0.5%, 1% and 2%). And antibiogram with the bacteria Xanthomonas axonopodis pv. phaseoli, in different concentrations (0.0%, 0.05%, 0.1%, 0.5%, 1%, 2% and 3%). For the fungus Pseudocercospora griseola, sporulation tests were carried out, using direct and indirect methods, at concentrations of (0.0%, 0.05%, 0.1%, 0.5%, 1%, 2%, and 3%). Furthermore, for the fungus Colletotrichum lindemuthianum, mycelial growth tests were carried out with the same concentrations. The experiments took place in vivo, with a completely randomized statistical design, involving five replications per treatment and concentrations varying from (0.0%, 0.05%, 0.1%, 0.5%, 1% and 2%). Disease incidence was assessed using a diagrammatic scale, disease severity, Area under the Disease Progress Curve (AACPD) and Area under the Incidence Progress Curve (AACPI). Melaleuca Essential Oil (EO) inhibited the development of fungi and bacteria in in vitro tests starting at 0.5%. In vivo, Melaleuca Essential Oil (EO) showed a significant reduction in the incidence and severity of the disease from 0.5% in both fungi and bacteria. Melaleuca EO can be an effective alternative for disease control in bean cultivation.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"115 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141834373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.29328/journal.jpsp.1001131
Edewor Theresa Ibibia, Olasunkanmi Amuda Mutiu, Owa Stephen Oluwagbemiga
Vitellaria paradoxa is an important medicinal plant that is used for the treatment of infections such as diarrhea, dysentery, helminthes, gastrointestinal tract, skin, and wounds. This research aims to determine other important uses of the plant leaves and quantify the phytochemicals present in the leaves. The plant leaves were extracted with two solvents (n-hexane and methanol). The phytochemicals were qualitatively and quantitatively analyzed using standard methods. The antioxidant activity was determined using DPPH. In the qualitative phytochemical screening of the methanol extract flavonoids, alkaloids, saponins, and tannins were identified as being present while steroids, anthraquinones, and glycosides were absent. All the screened secondary metabolites were absent in the n-hexane extract. In the GC-MS analysis of the methanol and n-hexane extracts seven compounds were obtained from the methanol extract while a total of twenty-four compounds were obtained from the n-hexane extract. The quantitative determination of the total flavonoid and phenolic contents showed that the leaves high content of flavonoids (91.00 mg quercetin equivalent/g extract) and phenolics (91.39 mg Gallic acid equivalent /g extract). These phytochemicals could be responsible for its high antioxidant activity (79.62%).
{"title":"GS-MS Profile, Total Flavonoid and Phenolic Contents and Antioxidant Capacity of Leaves of Vitelleria paradoxa c.f. Gaertn","authors":"Edewor Theresa Ibibia, Olasunkanmi Amuda Mutiu, Owa Stephen Oluwagbemiga","doi":"10.29328/journal.jpsp.1001131","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001131","url":null,"abstract":"Vitellaria paradoxa is an important medicinal plant that is used for the treatment of infections such as diarrhea, dysentery, helminthes, gastrointestinal tract, skin, and wounds. This research aims to determine other important uses of the plant leaves and quantify the phytochemicals present in the leaves. The plant leaves were extracted with two solvents (n-hexane and methanol). The phytochemicals were qualitatively and quantitatively analyzed using standard methods. The antioxidant activity was determined using DPPH. In the qualitative phytochemical screening of the methanol extract flavonoids, alkaloids, saponins, and tannins were identified as being present while steroids, anthraquinones, and glycosides were absent. All the screened secondary metabolites were absent in the n-hexane extract. In the GC-MS analysis of the methanol and n-hexane extracts seven compounds were obtained from the methanol extract while a total of twenty-four compounds were obtained from the n-hexane extract. The quantitative determination of the total flavonoid and phenolic contents showed that the leaves high content of flavonoids (91.00 mg quercetin equivalent/g extract) and phenolics (91.39 mg Gallic acid equivalent /g extract). These phytochemicals could be responsible for its high antioxidant activity (79.62%).","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"192 S543","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141040144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.29328/journal.jpsp.1001130
Vavera Radek, Hýsek Josef
Biofungicides are prepared based on living micro/organisms or on matters prepared from them. They are based on the antagonism of fungal pathogens and their antagonists. Their effect depends on weather conditions (temperature and moisture) in comparison with chemical fungicides which are effective in all conditions but they let the residues in plants, animals, and men. The future of agriculture will be pure food without chemicals.
{"title":"Are Biofungicides a Means of Plant Protection for the Future?","authors":"Vavera Radek, Hýsek Josef","doi":"10.29328/journal.jpsp.1001130","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001130","url":null,"abstract":"Biofungicides are prepared based on living micro/organisms or on matters prepared from them. They are based on the antagonism of fungal pathogens and their antagonists. Their effect depends on weather conditions (temperature and moisture) in comparison with chemical fungicides which are effective in all conditions but they let the residues in plants, animals, and men. The future of agriculture will be pure food without chemicals.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"295 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140703466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.29328/journal.jpsp.1001129
Vargas Luis Mario Tapias, Pérez Anselmo Hernández, Valencia Adelaida Stephany Hernández
Los Reyes, Michoacán, Mexico, is one of the main blackberry-producing places in the world, however, the disease located at the root level has caused important economic losses. Currently has been reported that the fungus Fusarium spp., is the main causal agent but actions to control it have failed. The objective of this work was to identify the possible presence of unreported pathogenic fungi in the root system of the blackberry and identify them molecularly. It was sampled in a commercial open-air orchard from Los Reyes, pieces of roots were taken from symptomatic plants with wilting and decay. The fungi were isolated in the laboratory, identified with taxonomic keys, extraction was performed, and the sequences obtained were compared with those reported in the NCBI gene bank. Among the results obtained were Kalmusia italica, Epicoccum nigrum, Microsphaeropsis arundinis, Achizophyllum commune, and, as expected, some species of Fusarium spp.
墨西哥米却肯州的洛斯雷耶斯是世界上主要的黑莓产地之一,但位于根部的黑莓病却造成了重大的经济损失。目前有报告称,镰刀菌是主要的致病菌,但控制该病的行动却以失败告终。这项工作的目的是确定黑莓根系中可能存在的未报告的致病真菌,并对其进行分子鉴定。我们在洛斯雷耶斯的一个商业露天果园中对黑莓进行了采样,从出现枯萎和腐烂症状的植株上采集了根部碎片。在实验室中分离出真菌,用分类钥匙进行鉴定,进行提取,并将获得的序列与 NCBI 基因库中报告的序列进行比较。结果发现了 Kalmusia italica、Epicoccum nigrum、Microsphaeropsis arundinis、Achizophyllum commune 以及镰刀菌属的一些菌种。
{"title":"New Fungi Associated with Blackberry Root Rot (Rubus spp.), in Michoacán, Mexico","authors":"Vargas Luis Mario Tapias, Pérez Anselmo Hernández, Valencia Adelaida Stephany Hernández","doi":"10.29328/journal.jpsp.1001129","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001129","url":null,"abstract":"Los Reyes, Michoacán, Mexico, is one of the main blackberry-producing places in the world, however, the disease located at the root level has caused important economic losses. Currently has been reported that the fungus Fusarium spp., is the main causal agent but actions to control it have failed. The objective of this work was to identify the possible presence of unreported pathogenic fungi in the root system of the blackberry and identify them molecularly. It was sampled in a commercial open-air orchard from Los Reyes, pieces of roots were taken from symptomatic plants with wilting and decay. The fungi were isolated in the laboratory, identified with taxonomic keys, extraction was performed, and the sequences obtained were compared with those reported in the NCBI gene bank. Among the results obtained were Kalmusia italica, Epicoccum nigrum, Microsphaeropsis arundinis, Achizophyllum commune, and, as expected, some species of Fusarium spp.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"316 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140703520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.29328/journal.jpsp.1001128
A. Mustapha, Muhammad Sanusi, Koul Bhupendra, Hamisu Anas, Hani Danladi Garba
Whiteflies (Bemisia tabaci Genn.) are aggressive hemipteran species that depend primarily on leaf tissue for their nourishment, causing substantial damages and yield losses in their hosts. This study was carried out to assess the effect of whitefly infestation on the growth parameters of one of the commercial eggplant cultivars (round green Solanum melongena L) under filed conditions. The trial consists of four treatments (T1= 15, T2= 30, T3= 45 and control (T4) = 0 whiteflies/plot) replicated four times. The result revealed that all the parameters assessed are negatively affected by whitefly infestation with plants in treatment (T3) being most affected while those in T1 are least affected. The dry weight recorded least value (1.1 g/leaf) having the highest percentage reduction (69.11%) followed by leaf area with 152.5cm2 (48.83% reduction) while the number of leaves was least affected recording 50.3 leaves/plant (18.09% reduction) at 90 days after infestation in 2022 experiment. In 2023 experiment, similar results were recorded with plants in T3 being most affected. Dry weight of the leaves had the lowest value (1.3g/leaf) representing the highest reduction (68.30%) followed by the leaf area with 167.3cm2 (44.8% reduction) with the number of leaves also being least affected, recording 52.1 leaves/plant representing 9.40% reduction with plants in treatment T1, at 90 days after infestation. The highest reduction in yield was also recorded with plants in T3 (92.10, 90.10%) while the least was observed in T1 (86.8 and 85.70%) for the respective trials (2022 and 2023). The result shows the level of susceptibility of the variety examined to whitefly infestation, demonstrating the urgent needs for the development of eco-friendly and sustainable whitefly management regimes for improved eggplant production in the area.
{"title":"Effect of Whitefly (Bemisia tabaci Genn.) Infestation on the Growth Parameters of Eggplant (Solanum melongena L.) in Kebbi State, Nigeria","authors":"A. Mustapha, Muhammad Sanusi, Koul Bhupendra, Hamisu Anas, Hani Danladi Garba","doi":"10.29328/journal.jpsp.1001128","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001128","url":null,"abstract":"Whiteflies (Bemisia tabaci Genn.) are aggressive hemipteran species that depend primarily on leaf tissue for their nourishment, causing substantial damages and yield losses in their hosts. This study was carried out to assess the effect of whitefly infestation on the growth parameters of one of the commercial eggplant cultivars (round green Solanum melongena L) under filed conditions. The trial consists of four treatments (T1= 15, T2= 30, T3= 45 and control (T4) = 0 whiteflies/plot) replicated four times. The result revealed that all the parameters assessed are negatively affected by whitefly infestation with plants in treatment (T3) being most affected while those in T1 are least affected. The dry weight recorded least value (1.1 g/leaf) having the highest percentage reduction (69.11%) followed by leaf area with 152.5cm2 (48.83% reduction) while the number of leaves was least affected recording 50.3 leaves/plant (18.09% reduction) at 90 days after infestation in 2022 experiment. In 2023 experiment, similar results were recorded with plants in T3 being most affected. Dry weight of the leaves had the lowest value (1.3g/leaf) representing the highest reduction (68.30%) followed by the leaf area with 167.3cm2 (44.8% reduction) with the number of leaves also being least affected, recording 52.1 leaves/plant representing 9.40% reduction with plants in treatment T1, at 90 days after infestation. The highest reduction in yield was also recorded with plants in T3 (92.10, 90.10%) while the least was observed in T1 (86.8 and 85.70%) for the respective trials (2022 and 2023). The result shows the level of susceptibility of the variety examined to whitefly infestation, demonstrating the urgent needs for the development of eco-friendly and sustainable whitefly management regimes for improved eggplant production in the area.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"44 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140751972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.29328/journal.jpsp.1001121
Viktoria Tsygankova, V. Andrusevich Ya, NM Vasylenko, SG Pilyo, SV Klyuchko, VS Brovarets
The effect of known synthetic compounds Ivin (N-oxide-2,6-dimethylpyridine), Methyur (sodium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine), Kamethur (potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine) and new synthetic compounds, derivatives of pyrimidine (No. 1 - 7) on the rooting of isolated stem cuttings of haricot bean (Phaseolus vulgaris L.) variety Bilozernaya was studied. The growth regulatory activity of synthetic compounds Ivin, Methyur, Kamethur, and synthetic compounds, derivatives of pyrimidine (No. 1 - 7) was compared with the activity of auxins IAA (1H-indol-3-yl)acetic acid) and NAA (1-naphthylacetic acid). The conducted studies showed that the regulatory effect of synthetic compounds Ivin, Methyur, Kamethur, and synthetic compounds, derivatives of pyridine (No. 1 - 7) on the rooting of isolated stem cuttings of haricot bean was similar to the auxins IAA and NAA. The synthetic compounds Ivin, Methyur, and Kamethur, and synthetic compounds, derivatives of pyrimidine (No. 1, 4, 5, and 7) showed the highest auxin-like activity. The indicators of the total number of roots (pcs) and total length of roots (cm) obtained on isolated stem cuttings of haricot bean immersed in a water solution of synthetic compounds Ivin, Methyur, Kamethur and synthetic compounds, derivatives of pyridine (No. 1, 4, 5 and 7), used at a concentration of 10-7 M, statistically significantly exceeded similar indicators obtained on control isolated stem cuttings of haricot bean immersed in distilled water. The practical use of synthetic compounds Ivin, Methyur, Kamethur, and synthetic compounds, derivatives of pyrimidine (No. 1, 4, 5 and 7) is proposed to improve the vegetative propagation of haricot bean plants (Phaseolus vulgaris L.) and other plant species of the family Fabaceae by stem cuttings.
{"title":"Screening of Auxin-like Substances among Synthetic Compounds, Derivatives of Pyridine and Pyrimidine","authors":"Viktoria Tsygankova, V. Andrusevich Ya, NM Vasylenko, SG Pilyo, SV Klyuchko, VS Brovarets","doi":"10.29328/journal.jpsp.1001121","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001121","url":null,"abstract":"The effect of known synthetic compounds Ivin (N-oxide-2,6-dimethylpyridine), Methyur (sodium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine), Kamethur (potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine) and new synthetic compounds, derivatives of pyrimidine (No. 1 - 7) on the rooting of isolated stem cuttings of haricot bean (Phaseolus vulgaris L.) variety Bilozernaya was studied. The growth regulatory activity of synthetic compounds Ivin, Methyur, Kamethur, and synthetic compounds, derivatives of pyrimidine (No. 1 - 7) was compared with the activity of auxins IAA (1H-indol-3-yl)acetic acid) and NAA (1-naphthylacetic acid). The conducted studies showed that the regulatory effect of synthetic compounds Ivin, Methyur, Kamethur, and synthetic compounds, derivatives of pyridine (No. 1 - 7) on the rooting of isolated stem cuttings of haricot bean was similar to the auxins IAA and NAA. The synthetic compounds Ivin, Methyur, and Kamethur, and synthetic compounds, derivatives of pyrimidine (No. 1, 4, 5, and 7) showed the highest auxin-like activity. The indicators of the total number of roots (pcs) and total length of roots (cm) obtained on isolated stem cuttings of haricot bean immersed in a water solution of synthetic compounds Ivin, Methyur, Kamethur and synthetic compounds, derivatives of pyridine (No. 1, 4, 5 and 7), used at a concentration of 10-7 M, statistically significantly exceeded similar indicators obtained on control isolated stem cuttings of haricot bean immersed in distilled water. The practical use of synthetic compounds Ivin, Methyur, Kamethur, and synthetic compounds, derivatives of pyrimidine (No. 1, 4, 5 and 7) is proposed to improve the vegetative propagation of haricot bean plants (Phaseolus vulgaris L.) and other plant species of the family Fabaceae by stem cuttings.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"35 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139008916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-04DOI: 10.29328/journal.jpsp.1001120
M. Ahmed, EA Salem, MA Mahmoud, S. Shaheen
gypt and many other countries of the world because the seeds offer a low-cost source of protein, lysine, carbohydrates, minerals, and vitamins. Chocolate spot disease is a stress-related fungal disease produced by Botrytis fabae that causes plant damage, limits photosynthetic activity, and reduces yield. Results: Trichoderma atroviride greatly reduced mycelial growth by 90.00% in vitro, followed by T. harzianum (86.67%) and T. album (83.89%) on average. In vivo, all studied antagonists dramatically reduced Botrytis fabae disease incidence and severity in both seasons 2021/22 and 2022/23. T. atroviride showed the highest efficacy bioagent (73.55 and 85.15%), followed by T. harzianum (72.55 and 81.22%), in controlling B. fabae of faba bean plants in both seasons. In addition, the results also showed that all tested biological treatments had an impact on yield components and increased levels of chlorophyll, protein%, phenols, flavonoids, Peroxidase (PO), polyphenol Oxidase (PPO), chitinase, and -1, 3-glucanase activities compared to control treatment in both seasons. In this regard, spraying T. atroviride showed the highest efficacy as a bioagent, followed by T. harzianum. Contrary, T. hamatum showed the lowest efficacy compared to other treatments in both seasons. Conclusion: This investigation was carried out to determine the effectiveness of several different antagonists, i.e., T. album, T. atrovirde, T. hamatum, and T. harzianum (30 x 106 spore/ml), Blight Stop, and Bio Zeid, for controlling Botrytis fabae on bean plants and evaluating their effect on yield parameters, components, and quality.
因为巧克力种子是蛋白质、赖氨酸、碳水化合物、矿物质和维生素的低成本来源。巧克力斑病是一种与压力有关的真菌病害,由 Botrytis fabae 产生,会对植物造成损害、限制光合作用并降低产量。研究结果在体外,Trichoderma atroviride 能大大减少菌丝生长,平均减少 90.00%,其次是 T. harzianum(86.67%)和 T. album(83.89%)。在体内,所有研究的拮抗剂都能在 2021/22 和 2022/23 两个季节显著降低蚕豆灰霉病的发病率和严重程度。在这两个季节中,T. atroviride 生物制剂对控制蚕豆植株上的蚕豆病菌的效力最高(分别为 73.55% 和 85.15%),其次是 T. harzianum 生物制剂(分别为 72.55% 和 81.22%)。此外,研究结果还表明,与对照处理相比,所有测试的生物处理方法都对产量成分产生了影响,并提高了叶绿素、蛋白质%、酚类、类黄酮、过氧化物酶(PO)、多酚氧化酶(PPO)、几丁质酶和-1,3-葡聚糖酶的活性水平。在这方面,喷洒 T. atroviride 的生物制剂功效最高,其次是 T. harzianum。相反,在这两个季节中,与其他处理相比,T. hamatum 的功效最低。结论这项研究旨在确定几种不同的拮抗剂(即 T. album、T. atrovirde、T. hamatum 和 T. harzianum(30 x 106 孢子/毫升))、Blight Stop 和 Bio Zeid 对控制豆科植物上的 Botrytis fabae 的有效性,并评估它们对产量参数、成分和质量的影响。
{"title":"Management of Chocolate Spot Disease in Faba Bean Plants by using Biological Control Means","authors":"M. Ahmed, EA Salem, MA Mahmoud, S. Shaheen","doi":"10.29328/journal.jpsp.1001120","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001120","url":null,"abstract":"gypt and many other countries of the world because the seeds offer a low-cost source of protein, lysine, carbohydrates, minerals, and vitamins. Chocolate spot disease is a stress-related fungal disease produced by Botrytis fabae that causes plant damage, limits photosynthetic activity, and reduces yield. Results: Trichoderma atroviride greatly reduced mycelial growth by 90.00% in vitro, followed by T. harzianum (86.67%) and T. album (83.89%) on average. In vivo, all studied antagonists dramatically reduced Botrytis fabae disease incidence and severity in both seasons 2021/22 and 2022/23. T. atroviride showed the highest efficacy bioagent (73.55 and 85.15%), followed by T. harzianum (72.55 and 81.22%), in controlling B. fabae of faba bean plants in both seasons. In addition, the results also showed that all tested biological treatments had an impact on yield components and increased levels of chlorophyll, protein%, phenols, flavonoids, Peroxidase (PO), polyphenol Oxidase (PPO), chitinase, and -1, 3-glucanase activities compared to control treatment in both seasons. In this regard, spraying T. atroviride showed the highest efficacy as a bioagent, followed by T. harzianum. Contrary, T. hamatum showed the lowest efficacy compared to other treatments in both seasons. Conclusion: This investigation was carried out to determine the effectiveness of several different antagonists, i.e., T. album, T. atrovirde, T. hamatum, and T. harzianum (30 x 106 spore/ml), Blight Stop, and Bio Zeid, for controlling Botrytis fabae on bean plants and evaluating their effect on yield parameters, components, and quality.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"339 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139012217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.29328/journal.jpsp.1001115
NI Makunina
Tuva has been a cattle-breeding region since ancient times, extremely continental climate of this region is little suitable for agriculture. However, the steppes of intermountain depressions in Tuva were heavily plowed by the early 1980s. In the 1990s most of the arable lands were abandoned; the process of restoration (demutation) of natural vegetation on fallow lands began. By now, 30 years later, the old fallows are expected to achieve the stage of the secondary steppe. The purpose of this work is to estimate the differences between virgin steppes and corresponding secondary steppes in Tuva. Tussock, hummock, and desert virgin steppes have been compared with corresponding to three types of 30-year-old fallow communities. For this study, 330 geobotanical releves have been used. The criteria for comparison have been chosen as follows: the similarity of species composition, the spectrum of dominant species, species richness, grass cover, and grass height. The statistical validity of their differences has been verified. According to these criteria, virgin steppes and their 30-year-old fallow derivatives are shown to differ significantly.
{"title":"Fallow Lands of Tuva (Russia): 30 years of Steppe Demutation","authors":"NI Makunina","doi":"10.29328/journal.jpsp.1001115","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001115","url":null,"abstract":"Tuva has been a cattle-breeding region since ancient times, extremely continental climate of this region is little suitable for agriculture. However, the steppes of intermountain depressions in Tuva were heavily plowed by the early 1980s. In the 1990s most of the arable lands were abandoned; the process of restoration (demutation) of natural vegetation on fallow lands began. By now, 30 years later, the old fallows are expected to achieve the stage of the secondary steppe. The purpose of this work is to estimate the differences between virgin steppes and corresponding secondary steppes in Tuva. Tussock, hummock, and desert virgin steppes have been compared with corresponding to three types of 30-year-old fallow communities. For this study, 330 geobotanical releves have been used. The criteria for comparison have been chosen as follows: the similarity of species composition, the spectrum of dominant species, species richness, grass cover, and grass height. The statistical validity of their differences has been verified. According to these criteria, virgin steppes and their 30-year-old fallow derivatives are shown to differ significantly.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"20 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136316936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-22DOI: 10.29328/journal.jpsp.1001114
Tan Elif, Gezgincioğlu Ebru, Gülmez Özlem, Barış Özlem
This study aimed to determine whether the essential oils of thyme, ginger, and mint from medicinal aromatic plants can provide resistance to the pathogen Fusarium oxysporum in the maize plant. To this end, the antifungal effect of 0.1 ml, 0.25 ml, 0.5 ml, and 1 ml essential oil amounts was determined by the agar disc diffusion method. It was determined that concentrations containing 0.1, and 0.25 ml essential oil showed no antifungal effects, however, concentrations containing 0.5 and 1 ml essential oil had antifungal effects. The most effective concentration was found to be 1 ml of essential oil in all three species. The maize was grown under hydroponic conditions. Thyme, ginger, and mint essential oils (1 g/100 ml) were applied to the root medium of the grown maize plant on the 8th day. An F. oxysporum suspension containing 107 spores was applied after 24 hours and harvested 3 days later. When the reactive oxygen species (H2O2) and MDA amounts of the harvested plants were examined, it was observed that there was an increase in the population of F. oxysporum. However, applications of thyme, ginger, and mint essential oil have been observed to significantly reduce these. It was also determined that essential oils protected the plant against F. oxysporum by increasing antioxidant enzyme activities. Although these three essential oils applied have antifungal properties, it has been observed that the best effect belongs to thyme essential oil. The results show that essential oils of thyme ginger and mint can be used as potential fungicides against the pathogen F. oxysporum in maize cultivation
{"title":"Determination of the Potential for use of Plant Essential Oils as a Fungicide Against Fusarium Oxysporum (OG10)","authors":"Tan Elif, Gezgincioğlu Ebru, Gülmez Özlem, Barış Özlem","doi":"10.29328/journal.jpsp.1001114","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001114","url":null,"abstract":"This study aimed to determine whether the essential oils of thyme, ginger, and mint from medicinal aromatic plants can provide resistance to the pathogen Fusarium oxysporum in the maize plant. To this end, the antifungal effect of 0.1 ml, 0.25 ml, 0.5 ml, and 1 ml essential oil amounts was determined by the agar disc diffusion method. It was determined that concentrations containing 0.1, and 0.25 ml essential oil showed no antifungal effects, however, concentrations containing 0.5 and 1 ml essential oil had antifungal effects. The most effective concentration was found to be 1 ml of essential oil in all three species. The maize was grown under hydroponic conditions. Thyme, ginger, and mint essential oils (1 g/100 ml) were applied to the root medium of the grown maize plant on the 8th day. An F. oxysporum suspension containing 107 spores was applied after 24 hours and harvested 3 days later. When the reactive oxygen species (H2O2) and MDA amounts of the harvested plants were examined, it was observed that there was an increase in the population of F. oxysporum. However, applications of thyme, ginger, and mint essential oil have been observed to significantly reduce these. It was also determined that essential oils protected the plant against F. oxysporum by increasing antioxidant enzyme activities. Although these three essential oils applied have antifungal properties, it has been observed that the best effect belongs to thyme essential oil. The results show that essential oils of thyme ginger and mint can be used as potential fungicides against the pathogen F. oxysporum in maize cultivation","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136099286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-13DOI: 10.29328/journal.jpsp.1001113
Shen Junru, He Guoyou, Tang Xubing, Ren Longhui, Fang Bao, Zhen Anzhong, Yang Tao, Kong Chuisi
To reveal the influence of ecological zones on the structure of microbial communities in cigar rhizosphere soils, Yunnan's cigar tobacco production region was first divided into three ecological zones. Soil samples were collected at maturity and the community structure of fungi and bacteria in the rhizosphere soil was analyzed using 18S rRNA and 16S rRNA high-throughput sequencing techniques. The results showed that the dominant fungi were Ascomycota, Mortrellomycota, and Basidiomycota, and the dominant bacteria were Ascomycota and Proteobacteria. The dominant genera and relative abundances of fungi and bacteria differ at the genus level. Ecoregions may affect the community structure and distribution of fungal and bacterial diversity in the rhizospheric soil of cigars at maturity, which may provide a theoretical basis for the selection of high-quality cigar-producing regions in the future.
{"title":"Analysis of Microbial Diversity and Community Structure in the Rhizosphere of Cigar Tobacco in Different Agroecological Zones","authors":"Shen Junru, He Guoyou, Tang Xubing, Ren Longhui, Fang Bao, Zhen Anzhong, Yang Tao, Kong Chuisi","doi":"10.29328/journal.jpsp.1001113","DOIUrl":"https://doi.org/10.29328/journal.jpsp.1001113","url":null,"abstract":"To reveal the influence of ecological zones on the structure of microbial communities in cigar rhizosphere soils, Yunnan's cigar tobacco production region was first divided into three ecological zones. Soil samples were collected at maturity and the community structure of fungi and bacteria in the rhizosphere soil was analyzed using 18S rRNA and 16S rRNA high-throughput sequencing techniques. The results showed that the dominant fungi were Ascomycota, Mortrellomycota, and Basidiomycota, and the dominant bacteria were Ascomycota and Proteobacteria. The dominant genera and relative abundances of fungi and bacteria differ at the genus level. Ecoregions may affect the community structure and distribution of fungal and bacterial diversity in the rhizospheric soil of cigars at maturity, which may provide a theoretical basis for the selection of high-quality cigar-producing regions in the future.","PeriodicalId":93470,"journal":{"name":"Journal of plant science and phytopathology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135786676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}