一种针对反欺骗重播检测的干净标签后门攻击的时间色度触发器

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2023-11-01 DOI:10.1109/tdsc.2022.3233519
Wei Guo, Benedetta Tondi, Mauro Barni
{"title":"一种针对反欺骗重播检测的干净标签后门攻击的时间色度触发器","authors":"Wei Guo, Benedetta Tondi, Mauro Barni","doi":"10.1109/tdsc.2022.3233519","DOIUrl":null,"url":null,"abstract":"We propose a stealthy clean-label video backdoor attack against Deep Learning (DL)-based models aiming at detecting a particular class of spoofing attacks, namely video rebroadcast attacks. The injected backdoor does not affect spoofing detection in normal conditions, but induces a misclassification in the presence of a specific triggering signal. The proposed backdoor relies on a temporal trigger altering the average chrominance of the video sequence. The backdoor signal is designed by taking into account the peculiarities of the Human Visual System (HVS) to reduce the visibility of the trigger, thus increasing the stealthiness of the backdoor. To force the network to look at the presence of the trigger in the challenging clean-label scenario, we choose the poisoned samples used for the injection of the backdoor following a so-called Outlier Poisoning Strategy (OPS). According to OPS, the triggering signal is inserted in the training samples that the network finds more difficult to classify. The effectiveness of the proposed backdoor attack and its generality are validated experimentally on different datasets and anti-spoofing rebroadcast detection architectures.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"92 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Temporal Chrominance Trigger for Clean-Label Backdoor Attack Against Anti-Spoof Rebroadcast Detection\",\"authors\":\"Wei Guo, Benedetta Tondi, Mauro Barni\",\"doi\":\"10.1109/tdsc.2022.3233519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a stealthy clean-label video backdoor attack against Deep Learning (DL)-based models aiming at detecting a particular class of spoofing attacks, namely video rebroadcast attacks. The injected backdoor does not affect spoofing detection in normal conditions, but induces a misclassification in the presence of a specific triggering signal. The proposed backdoor relies on a temporal trigger altering the average chrominance of the video sequence. The backdoor signal is designed by taking into account the peculiarities of the Human Visual System (HVS) to reduce the visibility of the trigger, thus increasing the stealthiness of the backdoor. To force the network to look at the presence of the trigger in the challenging clean-label scenario, we choose the poisoned samples used for the injection of the backdoor following a so-called Outlier Poisoning Strategy (OPS). According to OPS, the triggering signal is inserted in the training samples that the network finds more difficult to classify. The effectiveness of the proposed backdoor attack and its generality are validated experimentally on different datasets and anti-spoofing rebroadcast detection architectures.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2022.3233519\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3233519","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种针对基于深度学习(DL)的模型的隐形干净标签视频后门攻击,旨在检测一类特定的欺骗攻击,即视频重播攻击。注入的后门在正常情况下不影响欺骗检测,但在特定触发信号存在时诱导错误分类。所提出的后门依赖于一个改变视频序列平均色度的时间触发器。后门信号的设计考虑了人类视觉系统(HVS)的特性,降低了触发器的可见性,从而增加了后门的隐蔽性。为了迫使网络在具有挑战性的清洁标签场景中查看触发器的存在,我们根据所谓的离群中毒策略(OPS)选择用于注射后门的有毒样本。根据OPS,将触发信号插入到网络认为较难分类的训练样本中。在不同的数据集和反欺骗重播检测架构上,实验验证了后门攻击的有效性及其通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Temporal Chrominance Trigger for Clean-Label Backdoor Attack Against Anti-Spoof Rebroadcast Detection
We propose a stealthy clean-label video backdoor attack against Deep Learning (DL)-based models aiming at detecting a particular class of spoofing attacks, namely video rebroadcast attacks. The injected backdoor does not affect spoofing detection in normal conditions, but induces a misclassification in the presence of a specific triggering signal. The proposed backdoor relies on a temporal trigger altering the average chrominance of the video sequence. The backdoor signal is designed by taking into account the peculiarities of the Human Visual System (HVS) to reduce the visibility of the trigger, thus increasing the stealthiness of the backdoor. To force the network to look at the presence of the trigger in the challenging clean-label scenario, we choose the poisoned samples used for the injection of the backdoor following a so-called Outlier Poisoning Strategy (OPS). According to OPS, the triggering signal is inserted in the training samples that the network finds more difficult to classify. The effectiveness of the proposed backdoor attack and its generality are validated experimentally on different datasets and anti-spoofing rebroadcast detection architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
Blockchain Based Auditable Access Control For Business Processes With Event Driven Policies. A Comprehensive Trusted Runtime for WebAssembly with Intel SGX TAICHI: Transform Your Secret Exploits Into Mine From a Victim’s Perspective Black Swan in Blockchain: Micro Analysis of Natural Forking Spenny: Extensive ICS Protocol Reverse Analysis via Field Guided Symbolic Execution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1