{"title":"AdaMEC:面向移动边缘计算的上下文自适应和动态组合DNN部署框架","authors":"BoWen Pang, Sicong Liu, Hongli Wang, Bin Guo, Yuzhan Wang, Hao Wang, Zhenli Sheng, Zhongyi Wang, Zhiwen Yu","doi":"10.1145/3630098","DOIUrl":null,"url":null,"abstract":"With the rapid development of deep learning, recent research on intelligent and interactive mobile applications ( e.g. , health monitoring, speech recognition) has attracted extensive attention. And these applications necessitate the mobile edge computing scheme, i.e. , offloading partial computation from mobile devices to edge devices for inference acceleration and transmission load reduction. The current practices have relied on collaborative DNN partition and offloading to satisfy the predefined latency requirements, which is intractable to adapt to the dynamic deployment context at runtime. AdaMEC, a context-adaptive and dynamically-combinable DNN deployment framework is proposed to meet these requirements for mobile edge computing, which consists of three novel techniques. First, once-for-all DNN pre-partition divides DNN at the primitive operator level and stores partitioned modules into executable files, defined as pre-partitioned DNN atoms. Second, context-adaptive DNN atom combination and offloading introduces a graph-based decision algorithm to quickly search the suitable combination of atoms and adaptively make the offloading plan under dynamic deployment contexts. Third, runtime latency predictor provides timely latency feedback for DNN deployment considering both DNN configurations and dynamic contexts. Extensive experiments demonstrate that AdaMEC outperforms state-of-the-art baselines in terms of latency reduction by up to 62.14% and average memory saving by 55.21%.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"28 2","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AdaMEC: Towards a Context-Adaptive and Dynamically-Combinable DNN Deployment Framework for Mobile Edge Computing\",\"authors\":\"BoWen Pang, Sicong Liu, Hongli Wang, Bin Guo, Yuzhan Wang, Hao Wang, Zhenli Sheng, Zhongyi Wang, Zhiwen Yu\",\"doi\":\"10.1145/3630098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of deep learning, recent research on intelligent and interactive mobile applications ( e.g. , health monitoring, speech recognition) has attracted extensive attention. And these applications necessitate the mobile edge computing scheme, i.e. , offloading partial computation from mobile devices to edge devices for inference acceleration and transmission load reduction. The current practices have relied on collaborative DNN partition and offloading to satisfy the predefined latency requirements, which is intractable to adapt to the dynamic deployment context at runtime. AdaMEC, a context-adaptive and dynamically-combinable DNN deployment framework is proposed to meet these requirements for mobile edge computing, which consists of three novel techniques. First, once-for-all DNN pre-partition divides DNN at the primitive operator level and stores partitioned modules into executable files, defined as pre-partitioned DNN atoms. Second, context-adaptive DNN atom combination and offloading introduces a graph-based decision algorithm to quickly search the suitable combination of atoms and adaptively make the offloading plan under dynamic deployment contexts. Third, runtime latency predictor provides timely latency feedback for DNN deployment considering both DNN configurations and dynamic contexts. Extensive experiments demonstrate that AdaMEC outperforms state-of-the-art baselines in terms of latency reduction by up to 62.14% and average memory saving by 55.21%.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"28 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3630098\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
AdaMEC: Towards a Context-Adaptive and Dynamically-Combinable DNN Deployment Framework for Mobile Edge Computing
With the rapid development of deep learning, recent research on intelligent and interactive mobile applications ( e.g. , health monitoring, speech recognition) has attracted extensive attention. And these applications necessitate the mobile edge computing scheme, i.e. , offloading partial computation from mobile devices to edge devices for inference acceleration and transmission load reduction. The current practices have relied on collaborative DNN partition and offloading to satisfy the predefined latency requirements, which is intractable to adapt to the dynamic deployment context at runtime. AdaMEC, a context-adaptive and dynamically-combinable DNN deployment framework is proposed to meet these requirements for mobile edge computing, which consists of three novel techniques. First, once-for-all DNN pre-partition divides DNN at the primitive operator level and stores partitioned modules into executable files, defined as pre-partitioned DNN atoms. Second, context-adaptive DNN atom combination and offloading introduces a graph-based decision algorithm to quickly search the suitable combination of atoms and adaptively make the offloading plan under dynamic deployment contexts. Third, runtime latency predictor provides timely latency feedback for DNN deployment considering both DNN configurations and dynamic contexts. Extensive experiments demonstrate that AdaMEC outperforms state-of-the-art baselines in terms of latency reduction by up to 62.14% and average memory saving by 55.21%.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.