{"title":"通过网关层的矩形和间隙网格增强多层物联网网络的容错性","authors":"Sastry Kodanda Rama Jammalamadaka, Bhupati Chokara, Sasi Bhanu Jammalamadaka, Balakrishna Kamesh Duvvuri, Rajarao Budaraju","doi":"10.3390/jsan12050076","DOIUrl":null,"url":null,"abstract":"Most IoT systems designed for the implementation of mission-critical systems are multi-layered. Much of the computing is done in the service and gateway layers. The gateway layer connects the internal section of the IoT to the cloud through the Internet. The failure of any node between the servers and the gateways will isolate the entire network, leading to zero tolerance. The service and gateway layers must be connected using networking topologies to yield 100% fault tolerance. The empirical formulation of the model chosen to connect the service’s servers to the gateways through routers is required to compute the fault tolerance of the network. A rectangular and interstitial mesh have been proposed in this paper to connect the service servers to the gateways through the servers, which yields 0.999 fault tolerance of the IoT network. Also provided is an empirical approach to computing the IoT network’s fault tolerance. A rectangular and interstitial mesh have been implemented in the network’s gateway layer, increasing the IoT network’s ability to tolerate faults by 11%.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":"34 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Fault Tolerance of a Multi-Layered IoT Network through Rectangular and Interstitial Mesh in the Gateway Layer\",\"authors\":\"Sastry Kodanda Rama Jammalamadaka, Bhupati Chokara, Sasi Bhanu Jammalamadaka, Balakrishna Kamesh Duvvuri, Rajarao Budaraju\",\"doi\":\"10.3390/jsan12050076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most IoT systems designed for the implementation of mission-critical systems are multi-layered. Much of the computing is done in the service and gateway layers. The gateway layer connects the internal section of the IoT to the cloud through the Internet. The failure of any node between the servers and the gateways will isolate the entire network, leading to zero tolerance. The service and gateway layers must be connected using networking topologies to yield 100% fault tolerance. The empirical formulation of the model chosen to connect the service’s servers to the gateways through routers is required to compute the fault tolerance of the network. A rectangular and interstitial mesh have been proposed in this paper to connect the service servers to the gateways through the servers, which yields 0.999 fault tolerance of the IoT network. Also provided is an empirical approach to computing the IoT network’s fault tolerance. A rectangular and interstitial mesh have been implemented in the network’s gateway layer, increasing the IoT network’s ability to tolerate faults by 11%.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan12050076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12050076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enhancing the Fault Tolerance of a Multi-Layered IoT Network through Rectangular and Interstitial Mesh in the Gateway Layer
Most IoT systems designed for the implementation of mission-critical systems are multi-layered. Much of the computing is done in the service and gateway layers. The gateway layer connects the internal section of the IoT to the cloud through the Internet. The failure of any node between the servers and the gateways will isolate the entire network, leading to zero tolerance. The service and gateway layers must be connected using networking topologies to yield 100% fault tolerance. The empirical formulation of the model chosen to connect the service’s servers to the gateways through routers is required to compute the fault tolerance of the network. A rectangular and interstitial mesh have been proposed in this paper to connect the service servers to the gateways through the servers, which yields 0.999 fault tolerance of the IoT network. Also provided is an empirical approach to computing the IoT network’s fault tolerance. A rectangular and interstitial mesh have been implemented in the network’s gateway layer, increasing the IoT network’s ability to tolerate faults by 11%.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.