稀疏深度学习的统计保障

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2023-01-24 DOI:10.1007/s10182-022-00467-3
Johannes Lederer
{"title":"稀疏深度学习的统计保障","authors":"Johannes Lederer","doi":"10.1007/s10182-022-00467-3","DOIUrl":null,"url":null,"abstract":"<div><p>Neural networks are becoming increasingly popular in applications, but our mathematical understanding of their potential and limitations is still limited. In this paper, we further this understanding by developing statistical guarantees for sparse deep learning. In contrast to previous work, we consider different types of sparsity, such as few active connections, few active nodes, and other norm-based types of sparsity. Moreover, our theories cover important aspects that previous theories have neglected, such as multiple outputs, regularization, and <span>\\(\\ell_{2}\\)</span>-loss. The guarantees have a mild dependence on network widths and depths, which means that they support the application of sparse but wide and deep networks from a statistical perspective. Some of the concepts and tools that we use in our derivations are uncommon in deep learning and, hence, might be of additional interest.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00467-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Statistical guarantees for sparse deep learning\",\"authors\":\"Johannes Lederer\",\"doi\":\"10.1007/s10182-022-00467-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neural networks are becoming increasingly popular in applications, but our mathematical understanding of their potential and limitations is still limited. In this paper, we further this understanding by developing statistical guarantees for sparse deep learning. In contrast to previous work, we consider different types of sparsity, such as few active connections, few active nodes, and other norm-based types of sparsity. Moreover, our theories cover important aspects that previous theories have neglected, such as multiple outputs, regularization, and <span>\\\\(\\\\ell_{2}\\\\)</span>-loss. The guarantees have a mild dependence on network widths and depths, which means that they support the application of sparse but wide and deep networks from a statistical perspective. Some of the concepts and tools that we use in our derivations are uncommon in deep learning and, hence, might be of additional interest.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10182-022-00467-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-022-00467-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00467-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

神经网络在应用中越来越受欢迎,但我们对其潜力和局限性的数学理解仍然有限。在本文中,我们通过开发稀疏深度学习的统计保证,进一步加深了对这一问题的理解。与之前的工作不同,我们考虑了不同类型的稀疏性,如很少的活动连接、很少的活动节点以及其他基于规范的稀疏性类型。此外,我们的理论还涵盖了以往理论所忽略的重要方面,如多重输出、正则化和(\ell_{2}\)损失。这些保证对网络宽度和深度有温和的依赖性,这意味着它们支持从统计学角度应用稀疏但宽而深的网络。我们在推导中使用的一些概念和工具在深度学习中并不常见,因此可能会引起额外的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical guarantees for sparse deep learning

Neural networks are becoming increasingly popular in applications, but our mathematical understanding of their potential and limitations is still limited. In this paper, we further this understanding by developing statistical guarantees for sparse deep learning. In contrast to previous work, we consider different types of sparsity, such as few active connections, few active nodes, and other norm-based types of sparsity. Moreover, our theories cover important aspects that previous theories have neglected, such as multiple outputs, regularization, and \(\ell_{2}\)-loss. The guarantees have a mild dependence on network widths and depths, which means that they support the application of sparse but wide and deep networks from a statistical perspective. Some of the concepts and tools that we use in our derivations are uncommon in deep learning and, hence, might be of additional interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1