一种高效的基于限制泛洪的AODV路由发现(RFBRD)方案

Poonam T. Agarkar, Manish D. Chawhan, Rahul N. Nawkhare, Daljeet Singh, Narendra P. Giradkar, Prashant R. Patil
{"title":"一种高效的基于限制泛洪的AODV路由发现(RFBRD)方案","authors":"Poonam T. Agarkar, Manish D. Chawhan, Rahul N. Nawkhare, Daljeet Singh, Narendra P. Giradkar, Prashant R. Patil","doi":"10.22247/ijcna/2023/223424","DOIUrl":null,"url":null,"abstract":"– AODV is one of the widely used routing schemes in WSN and MANET due to its on-demand characteristics and low overhead. The excessive flooding at the time of route discovery consumes lots of node energy. The network performance deteriorates due to the unconstrained and blind flooding of route request (RREQ) packets. The excessive flooding mechanism accounts for multiple reception of RREQ packets at nodes. It causes unwanted path loops, and packet collisions thus exhausting the node batteries. The restricted flooding-based route discovery (RFBRD) mechanism introduced in this paper adopts two different strategies for receiving first and subsequent RREQ packets before they are forwarded. On reception of the first RREQ at an intermediate node, the RREQ is forwarded/restricted based on node densities evaluated for the neighbourhood as well as the network. Four regions and five probabilities are considered based on node densities in the neighbourhood and the network. The mobile nodes lying in the low-density region are allowed to transmit the RREQ packets with higher probability as compared to other nodes present in high-density regions when the RREQ is received for the first time. For subsequent RREQ packets at an intermediate node, the RREQ is forwarded/restricted based on energy ratios and is allowed to forward the RREQ packets, if the node has sufficient residual energy concerning neighbourhood and network energies. Simulation analysis showed enhanced and improved performance in terms of end-to-end delay, and network residual energy concerning traditional AODV.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Restricted Flooding Based Route Discovery (RFBRD) Scheme for AODV Routing\",\"authors\":\"Poonam T. Agarkar, Manish D. Chawhan, Rahul N. Nawkhare, Daljeet Singh, Narendra P. Giradkar, Prashant R. Patil\",\"doi\":\"10.22247/ijcna/2023/223424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– AODV is one of the widely used routing schemes in WSN and MANET due to its on-demand characteristics and low overhead. The excessive flooding at the time of route discovery consumes lots of node energy. The network performance deteriorates due to the unconstrained and blind flooding of route request (RREQ) packets. The excessive flooding mechanism accounts for multiple reception of RREQ packets at nodes. It causes unwanted path loops, and packet collisions thus exhausting the node batteries. The restricted flooding-based route discovery (RFBRD) mechanism introduced in this paper adopts two different strategies for receiving first and subsequent RREQ packets before they are forwarded. On reception of the first RREQ at an intermediate node, the RREQ is forwarded/restricted based on node densities evaluated for the neighbourhood as well as the network. Four regions and five probabilities are considered based on node densities in the neighbourhood and the network. The mobile nodes lying in the low-density region are allowed to transmit the RREQ packets with higher probability as compared to other nodes present in high-density regions when the RREQ is received for the first time. For subsequent RREQ packets at an intermediate node, the RREQ is forwarded/restricted based on energy ratios and is allowed to forward the RREQ packets, if the node has sufficient residual energy concerning neighbourhood and network energies. Simulation analysis showed enhanced and improved performance in terms of end-to-end delay, and network residual energy concerning traditional AODV.\",\"PeriodicalId\":36485,\"journal\":{\"name\":\"International Journal of Computer Networks and Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22247/ijcna/2023/223424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2023/223424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Restricted Flooding Based Route Discovery (RFBRD) Scheme for AODV Routing
– AODV is one of the widely used routing schemes in WSN and MANET due to its on-demand characteristics and low overhead. The excessive flooding at the time of route discovery consumes lots of node energy. The network performance deteriorates due to the unconstrained and blind flooding of route request (RREQ) packets. The excessive flooding mechanism accounts for multiple reception of RREQ packets at nodes. It causes unwanted path loops, and packet collisions thus exhausting the node batteries. The restricted flooding-based route discovery (RFBRD) mechanism introduced in this paper adopts two different strategies for receiving first and subsequent RREQ packets before they are forwarded. On reception of the first RREQ at an intermediate node, the RREQ is forwarded/restricted based on node densities evaluated for the neighbourhood as well as the network. Four regions and five probabilities are considered based on node densities in the neighbourhood and the network. The mobile nodes lying in the low-density region are allowed to transmit the RREQ packets with higher probability as compared to other nodes present in high-density regions when the RREQ is received for the first time. For subsequent RREQ packets at an intermediate node, the RREQ is forwarded/restricted based on energy ratios and is allowed to forward the RREQ packets, if the node has sufficient residual energy concerning neighbourhood and network energies. Simulation analysis showed enhanced and improved performance in terms of end-to-end delay, and network residual energy concerning traditional AODV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Networks and Applications
International Journal of Computer Networks and Applications Computer Science-Computer Science Applications
CiteScore
2.30
自引率
0.00%
发文量
40
期刊最新文献
Co-Ordinated Blackhole and Grayhole Attack Detection Using Smart & Secure Ad Hoc On-Demand Distance Vector Routing Protocol in MANETs Resilient Artificial Bee Colony Optimized AODV Routing Protocol (RABCO-AODV-RP) for Minimizing the Energy Consumption in Flying Ad-Hoc Network TriChain: Kangaroo-Based Intrusion Detection for Secure Multipath Route Discovery and Route Maintenance in MANET Using Advanced Routing Protocol Expedient Intrusion Detection System in MANET Using Robust Dragonfly-Optimized Enhanced Naive Bayes (RDO-ENB) Vehicular Ad Hoc Networks Assisted Clustering Nodular Framework for Optimal Packet Routing and Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1