{"title":"基于DTFC的移动边缘计算高效qos感知自适应数据传播引擎设计","authors":"Gagandeep Kaur, Balraj Singh, Ranbir Singh Batth","doi":"10.22247/ijcna/2023/223420","DOIUrl":null,"url":null,"abstract":"– In the transformative landscape of mobile edge computing (MEC), where the convergence of computation and communication fuels the era of ubiquitous connectivity, formidable challenges loom large. The burgeoning demand for real-time, data-intensive applications places unprecedented pressure on existing infrastructure, demanding innovative solutions to address the intricate web of challenges. This paper embarks on a compelling journey through the realm of MEC, uncovering the multifaceted challenges that have hitherto impeded its seamless integration into our digital lives. As the proliferation of mobile devices and their insatiable appetite for data strain the network's capacity, latency becomes a formidable adversary, threatening the integrity of applications requiring split-second responsiveness. Furthermore, the capricious nature of mobile devices and their mobility introduces an unpredictable dynamism into the network topology, rendering traditional traffic control approaches ineffective. The consequence is a tangled web of congestion, resource underutilization, and compromised Quality of Service (QoS), all of which hinder the realization of MEC's full potential. In response to these challenges, we unveil a pioneering solution—a QoS-aware Adaptive Data Dissemination Engine (QADE) paired with Dynamic Traffic Flow Control (DTFC). This synergistic model augments the capabilities of MEC deployments by harnessing the power of content-based routing and advanced optimization techniques. QADE, with its innovative utilization of Elephant Herding Particle Swarm Optimizer (EHPSO), refines data dissemination processes with an unprecedented focus on QoS metrics. Temporal delay, energy consumption, throughput, and Packet Delivery Ratio (PDR) become our guiding stars in the quest for routing efficiency. By harnessing this wealth of information, QADE emerges as a beacon of efficiency, driving latency to its lowest ebb, magnifying bandwidth, mitigating packet loss, elevating throughput, and rationalizing operational costs. DTFC complements this endeavor by dynamically steering traffic flows by edge processing capacity, thereby circumventing congestion pitfalls and achieving resource utilization efficiency hitherto considered unattainable. In a series of exhaustive evaluations, our proposed QADE with DTFC emerges as a beacon of hope, surpassing traditional methodologies. With an 8.5% reduction in latency compared to RL, a 16.4% reduction compared to MTO SA, and an impressive 18.0% reduction compared to HFL, it ushers in a new era of real-time data dissemination. By championing QoS awareness, adaptability, and efficiency, this study catapults mobile edge computing into a future defined by resource optimization and stellar network performance, ushering in an era where challenges bow before innovation processes.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Efficient QoS-Aware Adaptive Data Dissemination Engine with DTFC for Mobile Edge Computing Deployments\",\"authors\":\"Gagandeep Kaur, Balraj Singh, Ranbir Singh Batth\",\"doi\":\"10.22247/ijcna/2023/223420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– In the transformative landscape of mobile edge computing (MEC), where the convergence of computation and communication fuels the era of ubiquitous connectivity, formidable challenges loom large. The burgeoning demand for real-time, data-intensive applications places unprecedented pressure on existing infrastructure, demanding innovative solutions to address the intricate web of challenges. This paper embarks on a compelling journey through the realm of MEC, uncovering the multifaceted challenges that have hitherto impeded its seamless integration into our digital lives. As the proliferation of mobile devices and their insatiable appetite for data strain the network's capacity, latency becomes a formidable adversary, threatening the integrity of applications requiring split-second responsiveness. Furthermore, the capricious nature of mobile devices and their mobility introduces an unpredictable dynamism into the network topology, rendering traditional traffic control approaches ineffective. The consequence is a tangled web of congestion, resource underutilization, and compromised Quality of Service (QoS), all of which hinder the realization of MEC's full potential. In response to these challenges, we unveil a pioneering solution—a QoS-aware Adaptive Data Dissemination Engine (QADE) paired with Dynamic Traffic Flow Control (DTFC). This synergistic model augments the capabilities of MEC deployments by harnessing the power of content-based routing and advanced optimization techniques. QADE, with its innovative utilization of Elephant Herding Particle Swarm Optimizer (EHPSO), refines data dissemination processes with an unprecedented focus on QoS metrics. Temporal delay, energy consumption, throughput, and Packet Delivery Ratio (PDR) become our guiding stars in the quest for routing efficiency. By harnessing this wealth of information, QADE emerges as a beacon of efficiency, driving latency to its lowest ebb, magnifying bandwidth, mitigating packet loss, elevating throughput, and rationalizing operational costs. DTFC complements this endeavor by dynamically steering traffic flows by edge processing capacity, thereby circumventing congestion pitfalls and achieving resource utilization efficiency hitherto considered unattainable. In a series of exhaustive evaluations, our proposed QADE with DTFC emerges as a beacon of hope, surpassing traditional methodologies. With an 8.5% reduction in latency compared to RL, a 16.4% reduction compared to MTO SA, and an impressive 18.0% reduction compared to HFL, it ushers in a new era of real-time data dissemination. By championing QoS awareness, adaptability, and efficiency, this study catapults mobile edge computing into a future defined by resource optimization and stellar network performance, ushering in an era where challenges bow before innovation processes.\",\"PeriodicalId\":36485,\"journal\":{\"name\":\"International Journal of Computer Networks and Applications\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22247/ijcna/2023/223420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2023/223420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Design of an Efficient QoS-Aware Adaptive Data Dissemination Engine with DTFC for Mobile Edge Computing Deployments
– In the transformative landscape of mobile edge computing (MEC), where the convergence of computation and communication fuels the era of ubiquitous connectivity, formidable challenges loom large. The burgeoning demand for real-time, data-intensive applications places unprecedented pressure on existing infrastructure, demanding innovative solutions to address the intricate web of challenges. This paper embarks on a compelling journey through the realm of MEC, uncovering the multifaceted challenges that have hitherto impeded its seamless integration into our digital lives. As the proliferation of mobile devices and their insatiable appetite for data strain the network's capacity, latency becomes a formidable adversary, threatening the integrity of applications requiring split-second responsiveness. Furthermore, the capricious nature of mobile devices and their mobility introduces an unpredictable dynamism into the network topology, rendering traditional traffic control approaches ineffective. The consequence is a tangled web of congestion, resource underutilization, and compromised Quality of Service (QoS), all of which hinder the realization of MEC's full potential. In response to these challenges, we unveil a pioneering solution—a QoS-aware Adaptive Data Dissemination Engine (QADE) paired with Dynamic Traffic Flow Control (DTFC). This synergistic model augments the capabilities of MEC deployments by harnessing the power of content-based routing and advanced optimization techniques. QADE, with its innovative utilization of Elephant Herding Particle Swarm Optimizer (EHPSO), refines data dissemination processes with an unprecedented focus on QoS metrics. Temporal delay, energy consumption, throughput, and Packet Delivery Ratio (PDR) become our guiding stars in the quest for routing efficiency. By harnessing this wealth of information, QADE emerges as a beacon of efficiency, driving latency to its lowest ebb, magnifying bandwidth, mitigating packet loss, elevating throughput, and rationalizing operational costs. DTFC complements this endeavor by dynamically steering traffic flows by edge processing capacity, thereby circumventing congestion pitfalls and achieving resource utilization efficiency hitherto considered unattainable. In a series of exhaustive evaluations, our proposed QADE with DTFC emerges as a beacon of hope, surpassing traditional methodologies. With an 8.5% reduction in latency compared to RL, a 16.4% reduction compared to MTO SA, and an impressive 18.0% reduction compared to HFL, it ushers in a new era of real-time data dissemination. By championing QoS awareness, adaptability, and efficiency, this study catapults mobile edge computing into a future defined by resource optimization and stellar network performance, ushering in an era where challenges bow before innovation processes.