基于自动识别系统的轨迹聚类框架识别船舶运动模式

I Made Oka Widyantara, I Putu Noven Hartawan, Anak Agung Istri Ngurah Eka Karyawati, Ngurah Indra Er, Ketut Buda Artana
{"title":"基于自动识别系统的轨迹聚类框架识别船舶运动模式","authors":"I Made Oka Widyantara, I Putu Noven Hartawan, Anak Agung Istri Ngurah Eka Karyawati, Ngurah Indra Er, Ketut Buda Artana","doi":"10.11591/ijai.v12.i1.pp1-11","DOIUrl":null,"url":null,"abstract":"<span lang=\"EN-US\">Automatic identification system (AIS) is a vessel radio navigation equipment that has been determined by international maritime organization (IMO). Historical AIS data can be utilized for anomaly detection, trajectory prediction, and vessel trajectory planning. These benefits can be achieved by identifying the vessel's trajectory pattern through trajectory clustering. However, more effort is needed in trajectory clustering using AIS data due to their large volume and the significant number of deficiencies. In addition, trajectory clustering cannot be directly applied to trajectory data, which also applies to vessel trajectory. Therefore, we propose a trajectory clustering framework by combining douglas peucker (DP), longest common subsequence (LCSS), multi-dimensional scaling (MDS), and density-based spatial clustering of applications with noise (DBSCAN). Our experiments, carried out with AIS data for the Lombok Strait, Indonesia, showed that the trajectory compression with DP significantly accelerates the similarity measurement process. Moreover, we found that the LCSS is the optimal algorithm for similarity measurement of vessel trajectories based on AIS data. We also applied the right combination of MDS and DBSCAN in density-based clustering. The proposed framework can distinguish trajectoriess in different directions, identify the noise, and produce good quality clusters in relatively fast total processing time.</span>","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic identification system-based trajectory clustering framework to identify vessel movement pattern\",\"authors\":\"I Made Oka Widyantara, I Putu Noven Hartawan, Anak Agung Istri Ngurah Eka Karyawati, Ngurah Indra Er, Ketut Buda Artana\",\"doi\":\"10.11591/ijai.v12.i1.pp1-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span lang=\\\"EN-US\\\">Automatic identification system (AIS) is a vessel radio navigation equipment that has been determined by international maritime organization (IMO). Historical AIS data can be utilized for anomaly detection, trajectory prediction, and vessel trajectory planning. These benefits can be achieved by identifying the vessel's trajectory pattern through trajectory clustering. However, more effort is needed in trajectory clustering using AIS data due to their large volume and the significant number of deficiencies. In addition, trajectory clustering cannot be directly applied to trajectory data, which also applies to vessel trajectory. Therefore, we propose a trajectory clustering framework by combining douglas peucker (DP), longest common subsequence (LCSS), multi-dimensional scaling (MDS), and density-based spatial clustering of applications with noise (DBSCAN). Our experiments, carried out with AIS data for the Lombok Strait, Indonesia, showed that the trajectory compression with DP significantly accelerates the similarity measurement process. Moreover, we found that the LCSS is the optimal algorithm for similarity measurement of vessel trajectories based on AIS data. We also applied the right combination of MDS and DBSCAN in density-based clustering. The proposed framework can distinguish trajectoriess in different directions, identify the noise, and produce good quality clusters in relatively fast total processing time.</span>\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i1.pp1-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp1-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

自动识别系统(AIS)是国际海事组织(IMO)确定的一种船舶无线电导航设备。历史AIS数据可用于异常检测、轨迹预测和船舶轨迹规划。这些好处可以通过轨迹聚类来识别船舶的轨迹模式来实现。然而,由于AIS数据量大且存在大量缺陷,因此在轨迹聚类方面需要付出更多的努力。此外,轨迹聚类不能直接应用于轨迹数据,这也适用于船舶轨迹。因此,我们提出了一种结合douglas peucker (DP)、最长公共子序列(LCSS)、多维尺度(MDS)和基于密度的带噪声应用空间聚类(DBSCAN)的轨迹聚类框架。我们在印度尼西亚龙目岛海峡的AIS数据上进行的实验表明,DP的轨迹压缩显著加快了相似性测量过程。此外,我们发现LCSS是基于AIS数据的船舶轨迹相似性度量的最佳算法。我们还在基于密度的聚类中应用了MDS和DBSCAN的正确组合。该框架能够区分不同方向的轨迹性,识别噪声,并在相对较快的总处理时间内生成高质量的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic identification system-based trajectory clustering framework to identify vessel movement pattern
Automatic identification system (AIS) is a vessel radio navigation equipment that has been determined by international maritime organization (IMO). Historical AIS data can be utilized for anomaly detection, trajectory prediction, and vessel trajectory planning. These benefits can be achieved by identifying the vessel's trajectory pattern through trajectory clustering. However, more effort is needed in trajectory clustering using AIS data due to their large volume and the significant number of deficiencies. In addition, trajectory clustering cannot be directly applied to trajectory data, which also applies to vessel trajectory. Therefore, we propose a trajectory clustering framework by combining douglas peucker (DP), longest common subsequence (LCSS), multi-dimensional scaling (MDS), and density-based spatial clustering of applications with noise (DBSCAN). Our experiments, carried out with AIS data for the Lombok Strait, Indonesia, showed that the trajectory compression with DP significantly accelerates the similarity measurement process. Moreover, we found that the LCSS is the optimal algorithm for similarity measurement of vessel trajectories based on AIS data. We also applied the right combination of MDS and DBSCAN in density-based clustering. The proposed framework can distinguish trajectoriess in different directions, identify the noise, and produce good quality clusters in relatively fast total processing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1