降雨诱发滑坡预测中机器学习和人工智能模型的发展

Hastuadi Harsa, Anistia Malinda Hidayat, Adi Mulsandi, Bambang Suprihadi, Roni Kurniawan, Muhammad Najib Habibie, Thahir Daniel Hutapea, Yunus S. Swarinoto, Erwin Eka Syahputra Makmur, Welly Fitria, Rahayu Sapta Sri Sudewi, Alfan Sukmana Praja
{"title":"降雨诱发滑坡预测中机器学习和人工智能模型的发展","authors":"Hastuadi Harsa, Anistia Malinda Hidayat, Adi Mulsandi, Bambang Suprihadi, Roni Kurniawan, Muhammad Najib Habibie, Thahir Daniel Hutapea, Yunus S. Swarinoto, Erwin Eka Syahputra Makmur, Welly Fitria, Rahayu Sapta Sri Sudewi, Alfan Sukmana Praja","doi":"10.11591/ijai.v12.i1.pp262-270","DOIUrl":null,"url":null,"abstract":"<span lang=\"EN-US\">In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance.</span>","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and artificial intelligence models development in rainfall-induced landslide prediction\",\"authors\":\"Hastuadi Harsa, Anistia Malinda Hidayat, Adi Mulsandi, Bambang Suprihadi, Roni Kurniawan, Muhammad Najib Habibie, Thahir Daniel Hutapea, Yunus S. Swarinoto, Erwin Eka Syahputra Makmur, Welly Fitria, Rahayu Sapta Sri Sudewi, Alfan Sukmana Praja\",\"doi\":\"10.11591/ijai.v12.i1.pp262-270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span lang=\\\"EN-US\\\">In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance.</span>\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i1.pp262-270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp262-270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在印度尼西亚,降雨是引发山体滑坡的一个关键因素。本文旨在利用几种机器学习和人工智能算法建立滑坡事件预测模型。算法用两种不同的方法进行训练。算法的输入是来自降水卫星观测全球卫星制图的降水数据,目标是来自印度尼西亚国家灾害管理委员会的滑坡事件发生数据。每种算法都为每种方法提供了一些具有不同参数设置的候选模型。结果,两种方法的候选模型分别有52和72个。然后从每种方法中选择最佳模型。结果表明,用广义线性模型生成的模型是第一种方法的最佳模型,用深度学习生成的模型是第二种方法的最佳模型。每种方法下的最佳模型的受者工作特性曲线下面积增益分别为0.828和0.836,对数损失分别为0.156和0.154。第二种方法使用输入数据转换,提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning and artificial intelligence models development in rainfall-induced landslide prediction
In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1