基于深度强化学习的物联网数据处理与调度

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Computers Communications & Control Pub Date : 2023-10-30 DOI:10.15837/ijccc.2023.6.5998
Yuchuan Jiang, Zhangjun Wang, ZhiXiong Jin
{"title":"基于深度强化学习的物联网数据处理与调度","authors":"Yuchuan Jiang, Zhangjun Wang, ZhiXiong Jin","doi":"10.15837/ijccc.2023.6.5998","DOIUrl":null,"url":null,"abstract":"With the continuous integration of IoT technology and information technology, edge computing, as an emerging computing paradigm, makes full use of terminals to process and analyse real-time data. The explosion of Internet of Things (IoT) devices has created challenges for traditional cloud-based data processing models due to high latency and availability requirements. This paper proposes a new edge computation-based framework for iot data processing and scheduling using deep reinforcement learning. The system architecture incorporates distributed iot data access, realtime processing, and an intelligent scheduler based on Deep q networks (DQN). A large number of experiments show that compared with traditional scheduling methods, the average task completion time is reduced by 20% and resource utilization is increased by 15%. The unique integration of edge computing and deep reinforcement learning provides a flexible and efficient platform for lowlatency iot applications. Key results obtained from testing the proposed system, such as reduced task completion time and increased resource utilization.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"11 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iot Data Processing and Scheduling Based on Deep Reinforcement Learning\",\"authors\":\"Yuchuan Jiang, Zhangjun Wang, ZhiXiong Jin\",\"doi\":\"10.15837/ijccc.2023.6.5998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous integration of IoT technology and information technology, edge computing, as an emerging computing paradigm, makes full use of terminals to process and analyse real-time data. The explosion of Internet of Things (IoT) devices has created challenges for traditional cloud-based data processing models due to high latency and availability requirements. This paper proposes a new edge computation-based framework for iot data processing and scheduling using deep reinforcement learning. The system architecture incorporates distributed iot data access, realtime processing, and an intelligent scheduler based on Deep q networks (DQN). A large number of experiments show that compared with traditional scheduling methods, the average task completion time is reduced by 20% and resource utilization is increased by 15%. The unique integration of edge computing and deep reinforcement learning provides a flexible and efficient platform for lowlatency iot applications. Key results obtained from testing the proposed system, such as reduced task completion time and increased resource utilization.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5998\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5998","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网技术与信息技术的不断融合,边缘计算作为一种新兴的计算范式,充分利用终端对实时数据进行处理和分析。由于高延迟和可用性要求,物联网(IoT)设备的爆炸式增长给传统的基于云的数据处理模型带来了挑战。本文提出了一种新的基于边缘计算的框架,用于使用深度强化学习进行物联网数据处理和调度。该系统架构融合了分布式物联网数据访问、实时处理和基于深度q网络(DQN)的智能调度器。大量实验表明,与传统调度方法相比,平均任务完成时间缩短了20%,资源利用率提高了15%。边缘计算和深度强化学习的独特集成为低延迟物联网应用提供了灵活高效的平台。从测试提议的系统中获得的关键结果,例如减少任务完成时间和增加资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iot Data Processing and Scheduling Based on Deep Reinforcement Learning
With the continuous integration of IoT technology and information technology, edge computing, as an emerging computing paradigm, makes full use of terminals to process and analyse real-time data. The explosion of Internet of Things (IoT) devices has created challenges for traditional cloud-based data processing models due to high latency and availability requirements. This paper proposes a new edge computation-based framework for iot data processing and scheduling using deep reinforcement learning. The system architecture incorporates distributed iot data access, realtime processing, and an intelligent scheduler based on Deep q networks (DQN). A large number of experiments show that compared with traditional scheduling methods, the average task completion time is reduced by 20% and resource utilization is increased by 15%. The unique integration of edge computing and deep reinforcement learning provides a flexible and efficient platform for lowlatency iot applications. Key results obtained from testing the proposed system, such as reduced task completion time and increased resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computers Communications & Control
International Journal of Computers Communications & Control 工程技术-计算机:信息系统
CiteScore
5.10
自引率
7.40%
发文量
55
审稿时长
6-12 weeks
期刊介绍: International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control). In particular, the following topics are expected to be addressed by authors: (1) Integrated solutions in computer-based control and communications; (2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence); (3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).
期刊最新文献
Optimizing Heterogeneity in IoT Infra Using Federated Learning and Blockchain-based Security Strategies Iot Data Processing and Scheduling Based on Deep Reinforcement Learning A Graph-Based PPO Approach in Multi-UAV Navigation for Communication Coverage Residual Generative Adversarial Adaptation Network For The Classification Of Melanoma Smart Agriculture in the Digital Age: A Comprehensive IoT-Driven Greenhouse Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1