{"title":"残差生成对抗适应网络在黑色素瘤分类中的应用","authors":"None S. Gowthami, None R. Harikumar","doi":"10.15837/ijccc.2023.6.5274","DOIUrl":null,"url":null,"abstract":"The capability of recognizing skin cancer in its earliest stages has the potential to be a component that saves lives. It is of the utmost importance to devise an autonomous technique that can be relied upon for accurate melanoma detection using image analysis. In this paper, Generative adversarial network (GAN) with suitable preprocessing is used to classify the labels for the detection of melanoma skin types. The simulation is run to evaluate the effectiveness of the model about several performance measures, such as accuracy, precision, recall, f-measure, percentage error, Dice coefficient, and Jaccard index. These are all performance measures that are taken into consideration. These metrics for measuring achievement are as follows: The results of the simulations make it exceedingly clear that the proposed TE-SAAGAN is more effective than the existing GAN protocols when it comes to recognizing the test images.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"45 S2","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Generative Adversarial Adaptation Network For The Classification Of Melanoma\",\"authors\":\"None S. Gowthami, None R. Harikumar\",\"doi\":\"10.15837/ijccc.2023.6.5274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of recognizing skin cancer in its earliest stages has the potential to be a component that saves lives. It is of the utmost importance to devise an autonomous technique that can be relied upon for accurate melanoma detection using image analysis. In this paper, Generative adversarial network (GAN) with suitable preprocessing is used to classify the labels for the detection of melanoma skin types. The simulation is run to evaluate the effectiveness of the model about several performance measures, such as accuracy, precision, recall, f-measure, percentage error, Dice coefficient, and Jaccard index. These are all performance measures that are taken into consideration. These metrics for measuring achievement are as follows: The results of the simulations make it exceedingly clear that the proposed TE-SAAGAN is more effective than the existing GAN protocols when it comes to recognizing the test images.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"45 S2\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5274\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5274","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Residual Generative Adversarial Adaptation Network For The Classification Of Melanoma
The capability of recognizing skin cancer in its earliest stages has the potential to be a component that saves lives. It is of the utmost importance to devise an autonomous technique that can be relied upon for accurate melanoma detection using image analysis. In this paper, Generative adversarial network (GAN) with suitable preprocessing is used to classify the labels for the detection of melanoma skin types. The simulation is run to evaluate the effectiveness of the model about several performance measures, such as accuracy, precision, recall, f-measure, percentage error, Dice coefficient, and Jaccard index. These are all performance measures that are taken into consideration. These metrics for measuring achievement are as follows: The results of the simulations make it exceedingly clear that the proposed TE-SAAGAN is more effective than the existing GAN protocols when it comes to recognizing the test images.
期刊介绍:
International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control).
In particular, the following topics are expected to be addressed by authors:
(1) Integrated solutions in computer-based control and communications;
(2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence);
(3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).