{"title":"基于模糊层次分析法和用户评分的混合过滤医生推荐系统","authors":"None V. Mani, None S. Thilagamani","doi":"10.15837/ijccc.2023.6.5086","DOIUrl":null,"url":null,"abstract":"As an emerging trend in data science, applications based on big data analytics are reshaping health informatics and medical scenarios.Currently, peoples are more cognizant and seek solutions to their healthcareproblems online. In the chorus, selecting a healthcare professional or organization is a tedious and time-consuming process. Patients may vainly spend time and meet severaldoctors until one is found that suits theirexact needs. Frequently, they do not have sufficient information on whereupon to base a decision. This has led to a dire requirementfor an efficient anddependablepatient-specific online tool to find out an appropriatedoctor in a limited time.In this paper, we propose a hybrid Physician Recommender System(PRS) by integrating various recommender approaches such asdemographic, collaborative, and content-based filtering for findingsuitabledoctors in line with the preferred choices of patients and their ratings. The proposed system resolves the problem of customization by studyingthe patient’s criteriaforchoosing a physician. It employs an adaptive algorithm to find the overall rank of the particular doctor. Furthermore, this ranking method is applied to convert patients’ preferred choices into a numerical base rating, which will ultimately be employed inour physician recommender system. The proposed system has been appraisedcarefully, and the result reveals that recommendations are rational and can satisfythe patient’s need for consistentphysician selection successfully.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"34 2","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Filtering-based Physician Recommender Systems using Fuzzy Analytic Hierarchy Process and User Ratings\",\"authors\":\"None V. Mani, None S. Thilagamani\",\"doi\":\"10.15837/ijccc.2023.6.5086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an emerging trend in data science, applications based on big data analytics are reshaping health informatics and medical scenarios.Currently, peoples are more cognizant and seek solutions to their healthcareproblems online. In the chorus, selecting a healthcare professional or organization is a tedious and time-consuming process. Patients may vainly spend time and meet severaldoctors until one is found that suits theirexact needs. Frequently, they do not have sufficient information on whereupon to base a decision. This has led to a dire requirementfor an efficient anddependablepatient-specific online tool to find out an appropriatedoctor in a limited time.In this paper, we propose a hybrid Physician Recommender System(PRS) by integrating various recommender approaches such asdemographic, collaborative, and content-based filtering for findingsuitabledoctors in line with the preferred choices of patients and their ratings. The proposed system resolves the problem of customization by studyingthe patient’s criteriaforchoosing a physician. It employs an adaptive algorithm to find the overall rank of the particular doctor. Furthermore, this ranking method is applied to convert patients’ preferred choices into a numerical base rating, which will ultimately be employed inour physician recommender system. The proposed system has been appraisedcarefully, and the result reveals that recommendations are rational and can satisfythe patient’s need for consistentphysician selection successfully.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"34 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5086\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5086","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Hybrid Filtering-based Physician Recommender Systems using Fuzzy Analytic Hierarchy Process and User Ratings
As an emerging trend in data science, applications based on big data analytics are reshaping health informatics and medical scenarios.Currently, peoples are more cognizant and seek solutions to their healthcareproblems online. In the chorus, selecting a healthcare professional or organization is a tedious and time-consuming process. Patients may vainly spend time and meet severaldoctors until one is found that suits theirexact needs. Frequently, they do not have sufficient information on whereupon to base a decision. This has led to a dire requirementfor an efficient anddependablepatient-specific online tool to find out an appropriatedoctor in a limited time.In this paper, we propose a hybrid Physician Recommender System(PRS) by integrating various recommender approaches such asdemographic, collaborative, and content-based filtering for findingsuitabledoctors in line with the preferred choices of patients and their ratings. The proposed system resolves the problem of customization by studyingthe patient’s criteriaforchoosing a physician. It employs an adaptive algorithm to find the overall rank of the particular doctor. Furthermore, this ranking method is applied to convert patients’ preferred choices into a numerical base rating, which will ultimately be employed inour physician recommender system. The proposed system has been appraisedcarefully, and the result reveals that recommendations are rational and can satisfythe patient’s need for consistentphysician selection successfully.
期刊介绍:
International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control).
In particular, the following topics are expected to be addressed by authors:
(1) Integrated solutions in computer-based control and communications;
(2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence);
(3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).