A. A. Salih, W. K. Abad, S. A. Fadaam, B. H. Hussein
{"title":"绿色合成法制备光伏用氧化铅纳米颗粒","authors":"A. A. Salih, W. K. Abad, S. A. Fadaam, B. H. Hussein","doi":"10.15251/djnb.2023.184.1225","DOIUrl":null,"url":null,"abstract":"PbO NPs have been prepared by green synthesis. The diffraction patterns of α-PbO-NPs are shown by the XRD pattern, and the β-PbO-NPs have proven the tetragonal and orthorhombic structure. PbO has an optical energy gap of 4.2 eV. The FT-IR observed bond at 676 cm-1 attributed to the existence of PbO stretch. Nanoparticals with spherical and semi-spherical shapes are formed, as seen in the SEM image. The average particle size was under 100 nm. Fabrication and characterization of a high performance Ag/PbO/PSi/pSi/Ag heterojunction photodetector. The photodetector's responsivity was 0.7 A/W at 850 nm. The maximum detectivity and quantum efficiency spectra 1.009 ×1013 at 850 nm and 3×102 at 200nm which indicates that PbO NPs made using this technique have a good chance of being used to create porous silicon photodetectors with high performance heterojunctions.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":"33 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of lead oxide nanoparticles by green synthesis method for photovoltaic applications\",\"authors\":\"A. A. Salih, W. K. Abad, S. A. Fadaam, B. H. Hussein\",\"doi\":\"10.15251/djnb.2023.184.1225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PbO NPs have been prepared by green synthesis. The diffraction patterns of α-PbO-NPs are shown by the XRD pattern, and the β-PbO-NPs have proven the tetragonal and orthorhombic structure. PbO has an optical energy gap of 4.2 eV. The FT-IR observed bond at 676 cm-1 attributed to the existence of PbO stretch. Nanoparticals with spherical and semi-spherical shapes are formed, as seen in the SEM image. The average particle size was under 100 nm. Fabrication and characterization of a high performance Ag/PbO/PSi/pSi/Ag heterojunction photodetector. The photodetector's responsivity was 0.7 A/W at 850 nm. The maximum detectivity and quantum efficiency spectra 1.009 ×1013 at 850 nm and 3×102 at 200nm which indicates that PbO NPs made using this technique have a good chance of being used to create porous silicon photodetectors with high performance heterojunctions.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.184.1225\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/djnb.2023.184.1225","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of lead oxide nanoparticles by green synthesis method for photovoltaic applications
PbO NPs have been prepared by green synthesis. The diffraction patterns of α-PbO-NPs are shown by the XRD pattern, and the β-PbO-NPs have proven the tetragonal and orthorhombic structure. PbO has an optical energy gap of 4.2 eV. The FT-IR observed bond at 676 cm-1 attributed to the existence of PbO stretch. Nanoparticals with spherical and semi-spherical shapes are formed, as seen in the SEM image. The average particle size was under 100 nm. Fabrication and characterization of a high performance Ag/PbO/PSi/pSi/Ag heterojunction photodetector. The photodetector's responsivity was 0.7 A/W at 850 nm. The maximum detectivity and quantum efficiency spectra 1.009 ×1013 at 850 nm and 3×102 at 200nm which indicates that PbO NPs made using this technique have a good chance of being used to create porous silicon photodetectors with high performance heterojunctions.