{"title":"用聚醚胺改性的线性聚氨酯丙烯酸酯的高回弹性和伸长率","authors":"Kangjie Shuai, Kuiyao Zhang, Shanshan Yao, Zhongbin Ni, Dongjian Shi, Mingqing Chen","doi":"10.1134/S156009042370121X","DOIUrl":null,"url":null,"abstract":"<p>Solvent-free polyurethane acrylate (PUA) by UV-cured process generally has low molecular weight, and thus shows weak mechanical properties, which limited its application. Herein, five kinds of linear polyetheramine modified polyurethane acrylates (PUPEA) were prepared using polyetheramine (PEA) instead of partial acrylic monomers as capping agents at the end of the polyurethane to improve the resilience and elongation. Structures of PUPEA were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR). Mechanical properties, hydrophobicity and thermodynamic properties of the obtained PUPEA were investigated and compared with those of conventional PUA. The results show that the semi-capping polyurethane with PEA instead of HEA can significantly improve the resilience and flexibility, specially, the flexibility increases about thrice to fourfold higher than those of PUA. Moreover, PUPEAs provide the self-healing properties and self-adhesive properties, while the conventional PUA does not have. Therefore, the introduction of PEA can effectively regulate the properties of PUA, which expands the application of UV-curable polyurethane elastomers in flexible electronic sensors.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 5","pages":"605 - 614"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Resilience and Elongation of Linear Polyurethane Acrylate Modified with Polyetheramines\",\"authors\":\"Kangjie Shuai, Kuiyao Zhang, Shanshan Yao, Zhongbin Ni, Dongjian Shi, Mingqing Chen\",\"doi\":\"10.1134/S156009042370121X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solvent-free polyurethane acrylate (PUA) by UV-cured process generally has low molecular weight, and thus shows weak mechanical properties, which limited its application. Herein, five kinds of linear polyetheramine modified polyurethane acrylates (PUPEA) were prepared using polyetheramine (PEA) instead of partial acrylic monomers as capping agents at the end of the polyurethane to improve the resilience and elongation. Structures of PUPEA were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR). Mechanical properties, hydrophobicity and thermodynamic properties of the obtained PUPEA were investigated and compared with those of conventional PUA. The results show that the semi-capping polyurethane with PEA instead of HEA can significantly improve the resilience and flexibility, specially, the flexibility increases about thrice to fourfold higher than those of PUA. Moreover, PUPEAs provide the self-healing properties and self-adhesive properties, while the conventional PUA does not have. Therefore, the introduction of PEA can effectively regulate the properties of PUA, which expands the application of UV-curable polyurethane elastomers in flexible electronic sensors.</p>\",\"PeriodicalId\":739,\"journal\":{\"name\":\"Polymer Science, Series B\",\"volume\":\"65 5\",\"pages\":\"605 - 614\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S156009042370121X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S156009042370121X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
采用紫外固化工艺制备的无溶剂聚氨酯丙烯酸酯(PUA)一般分子量较低,因此机械性能较弱,限制了其应用。本文利用聚醚胺(PEA)代替部分丙烯酸单体作为聚氨酯末端的封端剂,制备了五种线性聚醚胺改性聚氨酯丙烯酸酯(PUPEA),以提高其回弹性和伸长率。傅立叶变换红外光谱(FTIR)和核磁共振光谱(1H NMR)对 PUPEA 的结构进行了表征。研究了所得 PUPEA 的机械性能、疏水性和热力学性能,并与传统 PUA 进行了比较。结果表明,用 PEA 代替 HEA 的半封端聚氨酯能显著提高回弹性和柔韧性,特别是柔韧性比 PUA 提高了约三到四倍。此外,PUPEA 还具有传统 PUA 所不具备的自愈性和自粘性。因此,引入 PEA 可以有效调节 PUA 的性能,从而扩大紫外线固化聚氨酯弹性体在柔性电子传感器中的应用。
High Resilience and Elongation of Linear Polyurethane Acrylate Modified with Polyetheramines
Solvent-free polyurethane acrylate (PUA) by UV-cured process generally has low molecular weight, and thus shows weak mechanical properties, which limited its application. Herein, five kinds of linear polyetheramine modified polyurethane acrylates (PUPEA) were prepared using polyetheramine (PEA) instead of partial acrylic monomers as capping agents at the end of the polyurethane to improve the resilience and elongation. Structures of PUPEA were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Mechanical properties, hydrophobicity and thermodynamic properties of the obtained PUPEA were investigated and compared with those of conventional PUA. The results show that the semi-capping polyurethane with PEA instead of HEA can significantly improve the resilience and flexibility, specially, the flexibility increases about thrice to fourfold higher than those of PUA. Moreover, PUPEAs provide the self-healing properties and self-adhesive properties, while the conventional PUA does not have. Therefore, the introduction of PEA can effectively regulate the properties of PUA, which expands the application of UV-curable polyurethane elastomers in flexible electronic sensors.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed