{"title":"将 PPY-CuO 加入 GO 作为 OLED 应用的电子传输层材料的性能评估","authors":"Rimpi, R. Kandulna, U. Das, B. Kachhap","doi":"10.1134/S1560090423701208","DOIUrl":null,"url":null,"abstract":"<p>The chemical oxidative polymerization (COP) method was used in the lab to create the nanocomposite materials polypyrrole (PPY), reduced graphene oxide (rGO), polypyrrole-copper oxide (PPY-CuO), and polypyrrole-copper oxide-graphene oxide (PPY-CuO-GO). It was discovered by analysis of the X-Ray diffraction (XRD) results that CuO was successfully absorbed into the surface of PPY with an average crystallite size of 38 nm. The aggregation in the PPY polymer chain was accelerated by the anisotropic behavior of CuO. The conductivity of the PPY-CuO-GO nanocomposite was considerably improved, and the current density was enriched. When compared to the original PPY, the PPY-CuO-rGO nanocomposite was shown to have an improved current density of 49.20 A/cm<sup>2</sup> and reduced band gap 1.92 eV. The PPY-CuO-rGO nanocomposite can be employed as an electron transporting layer (ETL) material for organic light emitting diodes (OLED) application due to the increased current density and high electron-hole recombination rate.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 5","pages":"700 - 705"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties Evaluation of PPY-CuO Incorporated GO as Electron Transporting Layer Material for OLED Application\",\"authors\":\"Rimpi, R. Kandulna, U. Das, B. Kachhap\",\"doi\":\"10.1134/S1560090423701208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The chemical oxidative polymerization (COP) method was used in the lab to create the nanocomposite materials polypyrrole (PPY), reduced graphene oxide (rGO), polypyrrole-copper oxide (PPY-CuO), and polypyrrole-copper oxide-graphene oxide (PPY-CuO-GO). It was discovered by analysis of the X-Ray diffraction (XRD) results that CuO was successfully absorbed into the surface of PPY with an average crystallite size of 38 nm. The aggregation in the PPY polymer chain was accelerated by the anisotropic behavior of CuO. The conductivity of the PPY-CuO-GO nanocomposite was considerably improved, and the current density was enriched. When compared to the original PPY, the PPY-CuO-rGO nanocomposite was shown to have an improved current density of 49.20 A/cm<sup>2</sup> and reduced band gap 1.92 eV. The PPY-CuO-rGO nanocomposite can be employed as an electron transporting layer (ETL) material for organic light emitting diodes (OLED) application due to the increased current density and high electron-hole recombination rate.</p>\",\"PeriodicalId\":739,\"journal\":{\"name\":\"Polymer Science, Series B\",\"volume\":\"65 5\",\"pages\":\"700 - 705\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560090423701208\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090423701208","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Properties Evaluation of PPY-CuO Incorporated GO as Electron Transporting Layer Material for OLED Application
The chemical oxidative polymerization (COP) method was used in the lab to create the nanocomposite materials polypyrrole (PPY), reduced graphene oxide (rGO), polypyrrole-copper oxide (PPY-CuO), and polypyrrole-copper oxide-graphene oxide (PPY-CuO-GO). It was discovered by analysis of the X-Ray diffraction (XRD) results that CuO was successfully absorbed into the surface of PPY with an average crystallite size of 38 nm. The aggregation in the PPY polymer chain was accelerated by the anisotropic behavior of CuO. The conductivity of the PPY-CuO-GO nanocomposite was considerably improved, and the current density was enriched. When compared to the original PPY, the PPY-CuO-rGO nanocomposite was shown to have an improved current density of 49.20 A/cm2 and reduced band gap 1.92 eV. The PPY-CuO-rGO nanocomposite can be employed as an electron transporting layer (ETL) material for organic light emitting diodes (OLED) application due to the increased current density and high electron-hole recombination rate.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed