Huisheng Qu , Lang Liu , Yonglu Suo , Mengbo Zhu , Pan Yang , Caixing Zhang , Geng Xie
{"title":"层状充填体各向异性特征:力学性能与能量耗散","authors":"Huisheng Qu , Lang Liu , Yonglu Suo , Mengbo Zhu , Pan Yang , Caixing Zhang , Geng Xie","doi":"10.1016/j.jrmge.2023.02.034","DOIUrl":null,"url":null,"abstract":"<div><p>Layered backfill is commonly used in mining operations, and its mechanical behavior is strongly influenced by delamination parameters. In this study, 13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior, energy dissipation characteristics and crack development of backfill. P-wave velocity, uniaxial compression, scanning electron microscope (SEM), and acoustic emission (AE) experiments were conducted. The results indicate that: (1) The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle, respectively; the strength, delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship, which can realize the rapid prediction of strength. (2) The microstructure of the delaminated surface is looser than that of the matrix, leading to a decrease in strength and an increase at the pore-fissure compaction stage. The number and angle of delamination increase linearly with the anisotropy coefficient. (3) The energy evolution in angle-cut backfill can be divided into four stages, with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle. (4) Crack development increases with the number of delamination surface and delamination angle, resulting in a decrease in energy dissipation coefficient and peak AE energy. These findings provide valuable insights for the design of filling materials and processes in mining operations.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"15 12","pages":"Pages 3188-3208"},"PeriodicalIF":9.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523002676/pdfft?md5=d7f10f652fb6c88791b8bdb5ddaa8411&pid=1-s2.0-S1674775523002676-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic characteristics of layered backfill: Mechanical properties and energy dissipation\",\"authors\":\"Huisheng Qu , Lang Liu , Yonglu Suo , Mengbo Zhu , Pan Yang , Caixing Zhang , Geng Xie\",\"doi\":\"10.1016/j.jrmge.2023.02.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layered backfill is commonly used in mining operations, and its mechanical behavior is strongly influenced by delamination parameters. In this study, 13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior, energy dissipation characteristics and crack development of backfill. P-wave velocity, uniaxial compression, scanning electron microscope (SEM), and acoustic emission (AE) experiments were conducted. The results indicate that: (1) The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle, respectively; the strength, delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship, which can realize the rapid prediction of strength. (2) The microstructure of the delaminated surface is looser than that of the matrix, leading to a decrease in strength and an increase at the pore-fissure compaction stage. The number and angle of delamination increase linearly with the anisotropy coefficient. (3) The energy evolution in angle-cut backfill can be divided into four stages, with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle. (4) Crack development increases with the number of delamination surface and delamination angle, resulting in a decrease in energy dissipation coefficient and peak AE energy. These findings provide valuable insights for the design of filling materials and processes in mining operations.</p></div>\",\"PeriodicalId\":54219,\"journal\":{\"name\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"volume\":\"15 12\",\"pages\":\"Pages 3188-3208\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674775523002676/pdfft?md5=d7f10f652fb6c88791b8bdb5ddaa8411&pid=1-s2.0-S1674775523002676-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674775523002676\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523002676","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Anisotropic characteristics of layered backfill: Mechanical properties and energy dissipation
Layered backfill is commonly used in mining operations, and its mechanical behavior is strongly influenced by delamination parameters. In this study, 13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior, energy dissipation characteristics and crack development of backfill. P-wave velocity, uniaxial compression, scanning electron microscope (SEM), and acoustic emission (AE) experiments were conducted. The results indicate that: (1) The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle, respectively; the strength, delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship, which can realize the rapid prediction of strength. (2) The microstructure of the delaminated surface is looser than that of the matrix, leading to a decrease in strength and an increase at the pore-fissure compaction stage. The number and angle of delamination increase linearly with the anisotropy coefficient. (3) The energy evolution in angle-cut backfill can be divided into four stages, with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle. (4) Crack development increases with the number of delamination surface and delamination angle, resulting in a decrease in energy dissipation coefficient and peak AE energy. These findings provide valuable insights for the design of filling materials and processes in mining operations.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.