{"title":"H1和BMO鞅的积和换向子","authors":"Aline Bonami , Yong Jiao , Guangheng Xie , Dachun Yang , Dejian Zhou","doi":"10.1016/j.matpur.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>f</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> and <span><math><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> be two martingales related to the probability space <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> equipped with the filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span>. Assume that <em>f</em><span> is in the martingale Hardy space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <em>g</em> is in its dual space, namely the martingale BMO. Then the semi-martingale <span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> may be written as the sum<span><span><span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> with <span><math><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for any <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>:</mo><mo>=</mo><mn>0</mn><mo>=</mo><mo>:</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>. The authors prove that <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is a process with bounded variation and limit in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, while <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> belongs to the martingale Hardy-Orlicz space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> associated with the Orlicz function<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>.</mo></math></span></span></span> The above bilinear decomposition <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> is sharp in the sense that, for particular martingales, the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> cannot be replaced by a smaller space having a larger dual. As an application, the authors characterize the largest subspace of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> with <span><math><mi>b</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow></math></span><span>, such that the commutators </span><span><math><mo>[</mo><mi>T</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> with classical sublinear operators <em>T</em> are bounded from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>. This endpoint boundedness<span><span> of commutators allows the authors to give more applications. On the one hand, in the martingale setting, the authors obtain the endpoint estimates of commutators for both martingale transforms and martingale fractional integrals. On the other hand, in </span>harmonic analysis<span>, the authors establish the endpoint estimates of commutators both for the dyadic Hilbert transform<span> beyond doubling measures and for the maximal operator of Cesàro means of Walsh–Fourier series.</span></span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Products and commutators of martingales in H1 and BMO\",\"authors\":\"Aline Bonami , Yong Jiao , Guangheng Xie , Dachun Yang , Dejian Zhou\",\"doi\":\"10.1016/j.matpur.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>f</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> and <span><math><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> be two martingales related to the probability space <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> equipped with the filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span>. Assume that <em>f</em><span> is in the martingale Hardy space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <em>g</em> is in its dual space, namely the martingale BMO. Then the semi-martingale <span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> may be written as the sum<span><span><span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> with <span><math><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for any <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>:</mo><mo>=</mo><mn>0</mn><mo>=</mo><mo>:</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>. The authors prove that <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is a process with bounded variation and limit in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, while <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> belongs to the martingale Hardy-Orlicz space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> associated with the Orlicz function<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>.</mo></math></span></span></span> The above bilinear decomposition <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> is sharp in the sense that, for particular martingales, the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> cannot be replaced by a smaller space having a larger dual. As an application, the authors characterize the largest subspace of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> with <span><math><mi>b</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow></math></span><span>, such that the commutators </span><span><math><mo>[</mo><mi>T</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> with classical sublinear operators <em>T</em> are bounded from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>. This endpoint boundedness<span><span> of commutators allows the authors to give more applications. On the one hand, in the martingale setting, the authors obtain the endpoint estimates of commutators for both martingale transforms and martingale fractional integrals. On the other hand, in </span>harmonic analysis<span>, the authors establish the endpoint estimates of commutators both for the dyadic Hilbert transform<span> beyond doubling measures and for the maximal operator of Cesàro means of Walsh–Fourier series.</span></span></span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
摘要
设f:=(fn)n∈Z+, g:=(gn)n∈Z+是与过滤(fn)n∈Z+的概率空间(Ω, f,P)相关的两个鞅。设f在鞅Hardy空间H1中,g在它的对偶空间中,即鞅BMO中。则半鞅f⋅g:=(fngn)n∈Z+可以写成sumf⋅g= g (f,g)+L(f,g)。L (f, g): = (L (f, g) n) n∈Z + L (f, g) n: n =∑k = 0(颗−颗−1)(gk−gk−1)对于任何n∈Z + f−1:= 0 =:g−1。作者证明了L(f,g)是一个在L1中有界变分和极限的过程,而g (f,g)属于与Orlicz functionΦ(t):=tlog (e+t),∀t∈[0,∞)相关的鞅Hardy-Orlicz空间Hlog。上面的双线性分解L1+Hlog在某种意义上是尖锐的,对于特定的鞅,空间L1+Hlog不能被具有较大对偶的较小空间所取代。作为应用,作者刻画了H1的最大子空间,用b∈BMO表示为H1b,使得具有经典次线性算子T的换向子[T,b]从H1b有界到L1。换向子的端点有界性允许作者给出更多的应用。一方面,在鞅条件下,得到了鞅变换和鞅分数阶积分对易子的端点估计。另一方面,在调和分析中,作者建立了沃尔什-傅里叶级数的超越倍测度的并矢希尔伯特变换和Cesàro均值的极大算子的对易子端点估计。
Products and commutators of martingales in H1 and BMO
Let and be two martingales related to the probability space equipped with the filtration . Assume that f is in the martingale Hardy space and g is in its dual space, namely the martingale BMO. Then the semi-martingale may be written as the sum Here with for any , where . The authors prove that is a process with bounded variation and limit in , while belongs to the martingale Hardy-Orlicz space associated with the Orlicz function The above bilinear decomposition is sharp in the sense that, for particular martingales, the space cannot be replaced by a smaller space having a larger dual. As an application, the authors characterize the largest subspace of , denoted by with , such that the commutators with classical sublinear operators T are bounded from to . This endpoint boundedness of commutators allows the authors to give more applications. On the one hand, in the martingale setting, the authors obtain the endpoint estimates of commutators for both martingale transforms and martingale fractional integrals. On the other hand, in harmonic analysis, the authors establish the endpoint estimates of commutators both for the dyadic Hilbert transform beyond doubling measures and for the maximal operator of Cesàro means of Walsh–Fourier series.