基于观测器的不同幂哈密顿函数非线性系统有限时间鲁棒控制

Chunfu Zhang, Renming Yang, Guangye Li, Mingdong Hou
{"title":"基于观测器的不同幂哈密顿函数非线性系统有限时间鲁棒控制","authors":"Chunfu Zhang, Renming Yang, Guangye Li, Mingdong Hou","doi":"10.1177/09596518231193135","DOIUrl":null,"url":null,"abstract":"This work uses the Hamiltonian function approach to investigate the observer-based finite-time robust control problem of a broad nonlinear system and presents various new results. To begin, the Hamiltonian technique is used to convert the original system to its equivalent form, and then the observer system is designed. Afterward, utilizing the technology and the Lyapunov method, we investigate the finite-time control issue and give several finite-time stabilization results based on the observer method. Finally, a real unmanned vehicle is used to verify the performance of the observer-based finite-time robust stabilization controller. Different from the existing literature on the Hamiltonian method, the Hamiltonian function in this article has different powers, which implies that the results developed in this article have a wider range of application.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observer-based finite-time robust control for nonlinear systems with different power Hamiltonian functions\",\"authors\":\"Chunfu Zhang, Renming Yang, Guangye Li, Mingdong Hou\",\"doi\":\"10.1177/09596518231193135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work uses the Hamiltonian function approach to investigate the observer-based finite-time robust control problem of a broad nonlinear system and presents various new results. To begin, the Hamiltonian technique is used to convert the original system to its equivalent form, and then the observer system is designed. Afterward, utilizing the technology and the Lyapunov method, we investigate the finite-time control issue and give several finite-time stabilization results based on the observer method. Finally, a real unmanned vehicle is used to verify the performance of the observer-based finite-time robust stabilization controller. Different from the existing literature on the Hamiltonian method, the Hamiltonian function in this article has different powers, which implies that the results developed in this article have a wider range of application.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518231193135\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09596518231193135","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用哈密顿函数方法研究了一类广义非线性系统的基于观测器的有限时间鲁棒控制问题,并给出了各种新的结果。首先利用哈密顿技术将原系统转换为等效形式,然后设计观测器系统。然后,利用该技术和李雅普诺夫方法研究了有限时间控制问题,并给出了基于观测器方法的有限时间镇定结果。最后,通过实际无人驾驶车辆验证了基于观测器的有限时间鲁棒镇定控制器的性能。与已有的关于哈密顿方法的文献不同,本文的哈密顿函数具有不同的幂次,这意味着本文的结果具有更广泛的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Observer-based finite-time robust control for nonlinear systems with different power Hamiltonian functions
This work uses the Hamiltonian function approach to investigate the observer-based finite-time robust control problem of a broad nonlinear system and presents various new results. To begin, the Hamiltonian technique is used to convert the original system to its equivalent form, and then the observer system is designed. Afterward, utilizing the technology and the Lyapunov method, we investigate the finite-time control issue and give several finite-time stabilization results based on the observer method. Finally, a real unmanned vehicle is used to verify the performance of the observer-based finite-time robust stabilization controller. Different from the existing literature on the Hamiltonian method, the Hamiltonian function in this article has different powers, which implies that the results developed in this article have a wider range of application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
18.80%
发文量
99
审稿时长
4.2 months
期刊介绍: Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies. "It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.
期刊最新文献
Hybrid-triggered H∞ control for Markov jump systems with quantizations and hybrid attacks Design optimization and simulation of a 3D printed cable-driven continuum robot using IKM-ANN and nTop software Optimal course tracking control of USV with input dead zone based on adaptive fuzzy dynamic programing Development of new framework for order abatement and control design strategy Unwinding-free composite full-order sliding-mode control for attitude tracking of flexible spacecraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1