基于案例推理评估液化表现

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Spectra Pub Date : 2023-10-28 DOI:10.1177/87552930231203573
Brian Carlton, Mertcan Geyin, Harun Kursat Engin
{"title":"基于案例推理评估液化表现","authors":"Brian Carlton, Mertcan Geyin, Harun Kursat Engin","doi":"10.1177/87552930231203573","DOIUrl":null,"url":null,"abstract":"This article develops a framework for and explores the use of case-based reasoning (CBR) to predict seismically induced liquefaction manifestation. CBR is an artificial intelligence process that solves new problems using the known answers to similar past problems. CBR sorts a database of case histories based on their similarity to a design case and predicts the outcome of the design case as the observed outcome of the most similar case history or majority outcome of the most similar case histories. Two databases of liquefaction case histories are used to develop and validate numerous CBR models. Different input parameters and aspects of the CBR method and their influence on the predictive capability of the models are evaluated. Some of the developed CBR models were shown to have a better predictive power than currently existing models. However, more research is needed to refine these models before they can be used in practice. Nevertheless, this study shows the potential of CBR as a method to estimate liquefaction manifestation and suggests several avenues of future research.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"18 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of case-based reasoning to estimate liquefaction manifestation\",\"authors\":\"Brian Carlton, Mertcan Geyin, Harun Kursat Engin\",\"doi\":\"10.1177/87552930231203573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article develops a framework for and explores the use of case-based reasoning (CBR) to predict seismically induced liquefaction manifestation. CBR is an artificial intelligence process that solves new problems using the known answers to similar past problems. CBR sorts a database of case histories based on their similarity to a design case and predicts the outcome of the design case as the observed outcome of the most similar case history or majority outcome of the most similar case histories. Two databases of liquefaction case histories are used to develop and validate numerous CBR models. Different input parameters and aspects of the CBR method and their influence on the predictive capability of the models are evaluated. Some of the developed CBR models were shown to have a better predictive power than currently existing models. However, more research is needed to refine these models before they can be used in practice. Nevertheless, this study shows the potential of CBR as a method to estimate liquefaction manifestation and suggests several avenues of future research.\",\"PeriodicalId\":11392,\"journal\":{\"name\":\"Earthquake Spectra\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Spectra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/87552930231203573\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/87552930231203573","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一个框架,并探讨了使用基于案例的推理(CBR)来预测地震诱发的液化表现。CBR是一种人工智能过程,它利用过去类似问题的已知答案来解决新问题。CBR根据与设计案例的相似性对案例历史数据库进行排序,并将设计案例的结果预测为最相似案例历史的观察结果或最相似案例历史的大多数结果。两个液化案例历史数据库用于开发和验证许多CBR模型。评估了CBR方法的不同输入参数和方面,以及它们对模型预测能力的影响。一些已开发的CBR模型被证明具有比现有模型更好的预测能力。然而,在将这些模型用于实践之前,还需要进行更多的研究来完善这些模型。尽管如此,这项研究显示了CBR作为一种估计液化表现的方法的潜力,并提出了未来研究的几个途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of case-based reasoning to estimate liquefaction manifestation
This article develops a framework for and explores the use of case-based reasoning (CBR) to predict seismically induced liquefaction manifestation. CBR is an artificial intelligence process that solves new problems using the known answers to similar past problems. CBR sorts a database of case histories based on their similarity to a design case and predicts the outcome of the design case as the observed outcome of the most similar case history or majority outcome of the most similar case histories. Two databases of liquefaction case histories are used to develop and validate numerous CBR models. Different input parameters and aspects of the CBR method and their influence on the predictive capability of the models are evaluated. Some of the developed CBR models were shown to have a better predictive power than currently existing models. However, more research is needed to refine these models before they can be used in practice. Nevertheless, this study shows the potential of CBR as a method to estimate liquefaction manifestation and suggests several avenues of future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
期刊最新文献
Deep-neural-network model for predicting ground motion parameters using earthquake horizontal-to-vertical spectral ratios Ground-motions site and event specificity: Insights from assessing a suite of simulated ground motions in the San Francisco Bay Area Analysis of site-response residuals from empirical ground-motion models to account for observed sedimentary basin effects in Wellington, New Zealand Modeling hospital resources based on global epidemiology after earthquake-related disasters Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1