考虑“储-井”系统内热压和热力学条件的气井开发工艺指标的计算方法

IF 0.3 Q4 ENGINEERING, PETROLEUM Nafta-Gaz Pub Date : 2023-10-01 DOI:10.18668/ng.2023.10.06
Elmira V. Gadasheva, Sudaba H. Novruzova
{"title":"考虑“储-井”系统内热压和热力学条件的气井开发工艺指标的计算方法","authors":"Elmira V. Gadasheva, Sudaba H. Novruzova","doi":"10.18668/ng.2023.10.06","DOIUrl":null,"url":null,"abstract":"Considering the substantial prevalence of gas fields in the pool of developed fields, their development requires specialized approaches with the primary objective of optimizing the production process. The effectiveness of gas field development hinges on achieving the highest possible gas recovery factor. Achieving a high limit of the ultimate return of gas fields relies on decisions that vary depending on the precision of design estimates carried out at different stages of development and their timely execution. The accuracy of such estimates is, if possible, directly contingent on the thorough consideration of geological, technical, and technological factors when formulating methods for determining field development and operation indicators. Given the above considerations, this article proposes a methodology for determining the technological indicators of gas reservoir development, which enables to anticipate changes in reservoir pressure, temperature, and porosity of the gas reservoir, while accounting for the gas-dynamic interplay within the “reservoir-well” system in the depletion phase. The developed approach makes it possible to reliably ascertain reservoir development metrics by factoring in well conditions, temperature distribution within the reservoir, and reservoir deformation. In addition, it facilitates the necessary assessment for determining optimal well operations in light of reservoir conditions.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The method for calculating technological indicators in the development of gas wells while considering the thermobaric and thermodynamic conditions within the “reservoir-well” system\",\"authors\":\"Elmira V. Gadasheva, Sudaba H. Novruzova\",\"doi\":\"10.18668/ng.2023.10.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the substantial prevalence of gas fields in the pool of developed fields, their development requires specialized approaches with the primary objective of optimizing the production process. The effectiveness of gas field development hinges on achieving the highest possible gas recovery factor. Achieving a high limit of the ultimate return of gas fields relies on decisions that vary depending on the precision of design estimates carried out at different stages of development and their timely execution. The accuracy of such estimates is, if possible, directly contingent on the thorough consideration of geological, technical, and technological factors when formulating methods for determining field development and operation indicators. Given the above considerations, this article proposes a methodology for determining the technological indicators of gas reservoir development, which enables to anticipate changes in reservoir pressure, temperature, and porosity of the gas reservoir, while accounting for the gas-dynamic interplay within the “reservoir-well” system in the depletion phase. The developed approach makes it possible to reliably ascertain reservoir development metrics by factoring in well conditions, temperature distribution within the reservoir, and reservoir deformation. In addition, it facilitates the necessary assessment for determining optimal well operations in light of reservoir conditions.\",\"PeriodicalId\":45266,\"journal\":{\"name\":\"Nafta-Gaz\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nafta-Gaz\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18668/ng.2023.10.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nafta-Gaz","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18668/ng.2023.10.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

考虑到已开发油田中天然气田的大量存在,它们的开发需要专门的方法,其主要目标是优化生产过程。气田开发的有效性取决于能否获得尽可能高的采收率。要实现天然气田的最终收益上限,取决于在不同开发阶段进行的设计估算的精度和及时执行的决策。如果可能的话,这种估计的准确性直接取决于在制定确定油田开发和作业指标的方法时对地质、技术和工艺因素的彻底考虑。考虑到上述因素,本文提出了一种确定气藏开发技术指标的方法,该方法可以预测气藏压力、温度和孔隙度的变化,同时考虑枯竭阶段“气藏-井”系统内的气动力相互作用。通过考虑井况、储层内温度分布和储层变形,该方法可以可靠地确定储层开发指标。此外,它还有助于根据油藏条件确定最佳井作业的必要评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The method for calculating technological indicators in the development of gas wells while considering the thermobaric and thermodynamic conditions within the “reservoir-well” system
Considering the substantial prevalence of gas fields in the pool of developed fields, their development requires specialized approaches with the primary objective of optimizing the production process. The effectiveness of gas field development hinges on achieving the highest possible gas recovery factor. Achieving a high limit of the ultimate return of gas fields relies on decisions that vary depending on the precision of design estimates carried out at different stages of development and their timely execution. The accuracy of such estimates is, if possible, directly contingent on the thorough consideration of geological, technical, and technological factors when formulating methods for determining field development and operation indicators. Given the above considerations, this article proposes a methodology for determining the technological indicators of gas reservoir development, which enables to anticipate changes in reservoir pressure, temperature, and porosity of the gas reservoir, while accounting for the gas-dynamic interplay within the “reservoir-well” system in the depletion phase. The developed approach makes it possible to reliably ascertain reservoir development metrics by factoring in well conditions, temperature distribution within the reservoir, and reservoir deformation. In addition, it facilitates the necessary assessment for determining optimal well operations in light of reservoir conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nafta-Gaz
Nafta-Gaz ENGINEERING, PETROLEUM-
CiteScore
0.80
自引率
60.00%
发文量
81
期刊最新文献
Comparative analysis of different variants of installing rotary counterweights on the crank of the new design of beamless pumping unit The use of new effective compositions for decomposing a stable water-oil emulsion Wymagania wobec wodoru RFNBO Study of the effect of the composition of high-paraffin oil on their freezing temperature and on the corrosion aggressivity of formation water Wpływ korozji węglanowej na szczelność kamieni cementowych w otworach przeznaczonych do sekwestracji
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1