{"title":"PDF恶意软件检测的机器学习模型比较分析:评估不同的训练和测试标准","authors":"Bilal Khan, Muhammad Arshad, Sarwar Shah Khan","doi":"10.32604/jcs.2023.042501","DOIUrl":null,"url":null,"abstract":"The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks. Portable Document Format (PDF) files have emerged as a major attack vector for malware due to their adaptability and wide usage. Detecting malware in PDF files is challenging due to its ability to include various harmful elements such as embedded scripts, exploits, and malicious URLs. This paper presents a comparative analysis of machine learning (ML) techniques, including Naive Bayes (NB), K-Nearest Neighbor (KNN), Average One Dependency Estimator (A1DE), Random Forest (RF), and Support Vector Machine (SVM) for PDF malware detection. The study utilizes a dataset obtained from the Canadian Institute for Cyber-security and employs different testing criteria, namely percentage splitting and 10-fold cross-validation. The performance of the techniques is evaluated using F1-score, precision, recall, and accuracy measures. The results indicate that KNN outperforms other models, achieving an accuracy of 99.8599% using 10-fold cross-validation. The findings highlight the effectiveness of ML models in accurately detecting PDF malware and provide insights for developing robust systems to protect against malicious activities.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Machine Learning Models for PDF Malware Detection: Evaluating Different Training and Testing Criteria\",\"authors\":\"Bilal Khan, Muhammad Arshad, Sarwar Shah Khan\",\"doi\":\"10.32604/jcs.2023.042501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks. Portable Document Format (PDF) files have emerged as a major attack vector for malware due to their adaptability and wide usage. Detecting malware in PDF files is challenging due to its ability to include various harmful elements such as embedded scripts, exploits, and malicious URLs. This paper presents a comparative analysis of machine learning (ML) techniques, including Naive Bayes (NB), K-Nearest Neighbor (KNN), Average One Dependency Estimator (A1DE), Random Forest (RF), and Support Vector Machine (SVM) for PDF malware detection. The study utilizes a dataset obtained from the Canadian Institute for Cyber-security and employs different testing criteria, namely percentage splitting and 10-fold cross-validation. The performance of the techniques is evaluated using F1-score, precision, recall, and accuracy measures. The results indicate that KNN outperforms other models, achieving an accuracy of 99.8599% using 10-fold cross-validation. The findings highlight the effectiveness of ML models in accurately detecting PDF malware and provide insights for developing robust systems to protect against malicious activities.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/jcs.2023.042501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/jcs.2023.042501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Comparative Analysis of Machine Learning Models for PDF Malware Detection: Evaluating Different Training and Testing Criteria
The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks. Portable Document Format (PDF) files have emerged as a major attack vector for malware due to their adaptability and wide usage. Detecting malware in PDF files is challenging due to its ability to include various harmful elements such as embedded scripts, exploits, and malicious URLs. This paper presents a comparative analysis of machine learning (ML) techniques, including Naive Bayes (NB), K-Nearest Neighbor (KNN), Average One Dependency Estimator (A1DE), Random Forest (RF), and Support Vector Machine (SVM) for PDF malware detection. The study utilizes a dataset obtained from the Canadian Institute for Cyber-security and employs different testing criteria, namely percentage splitting and 10-fold cross-validation. The performance of the techniques is evaluated using F1-score, precision, recall, and accuracy measures. The results indicate that KNN outperforms other models, achieving an accuracy of 99.8599% using 10-fold cross-validation. The findings highlight the effectiveness of ML models in accurately detecting PDF malware and provide insights for developing robust systems to protect against malicious activities.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.