Alejandro Castillo Pardo, Tim Williams, Christopher Clark, Nick Atkins, Cesare Hall, Mark Wilson, Raul Vazquez Diaz
{"title":"低雷诺数风机试验的边界层控制","authors":"Alejandro Castillo Pardo, Tim Williams, Christopher Clark, Nick Atkins, Cesare Hall, Mark Wilson, Raul Vazquez Diaz","doi":"10.33737/jgpps/158035","DOIUrl":null,"url":null,"abstract":"Ultra-high bypass ratio turbofans offer significant reductions in fuel and pollution due to their higher propulsive efficiency. Short intakes might lead to a stronger fan-intake interaction, which creates uncertainty in stability at off-design conditions. Due to the prohibitive cost of full-scale experimental testing, subscale testing in wind tunnels is used to understand this behaviour. The low Reynolds number of subscale models results in unrepresentative laminar shock-boundary layer interactions. The boundary layer state thus needs to be conditioned to better represent full-scale transonic fans. This paper proposes the use of an inexpensive and robust flow control method for the suction side of a fan blade. Design guidelines are given for the location and height of the discrete roughness elements used to control the boundary layer state. This paper also presents a rapid experimental validation methodology to ensure and de-risk the application of the boundary layer trip to 3D rig blades. The experimental methodology is applied to a generic aerofoil representative of a fan tip section. The experimental method proves that it is possible to reproduce boundary layers and pressure distributions of a full-scale fan blade on a 1/10 subscale model. The results obtained confirm that the boundary layer trip method successfully promotes transition at the location representative of full-scale blades, avoiding unrepresentative laminar shock wave boundary layer interactions. This highlights the importance of conditioning boundary layers in low Reynolds number fan rig testing.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary layer control for low Reynolds number fan rig testing\",\"authors\":\"Alejandro Castillo Pardo, Tim Williams, Christopher Clark, Nick Atkins, Cesare Hall, Mark Wilson, Raul Vazquez Diaz\",\"doi\":\"10.33737/jgpps/158035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high bypass ratio turbofans offer significant reductions in fuel and pollution due to their higher propulsive efficiency. Short intakes might lead to a stronger fan-intake interaction, which creates uncertainty in stability at off-design conditions. Due to the prohibitive cost of full-scale experimental testing, subscale testing in wind tunnels is used to understand this behaviour. The low Reynolds number of subscale models results in unrepresentative laminar shock-boundary layer interactions. The boundary layer state thus needs to be conditioned to better represent full-scale transonic fans. This paper proposes the use of an inexpensive and robust flow control method for the suction side of a fan blade. Design guidelines are given for the location and height of the discrete roughness elements used to control the boundary layer state. This paper also presents a rapid experimental validation methodology to ensure and de-risk the application of the boundary layer trip to 3D rig blades. The experimental methodology is applied to a generic aerofoil representative of a fan tip section. The experimental method proves that it is possible to reproduce boundary layers and pressure distributions of a full-scale fan blade on a 1/10 subscale model. The results obtained confirm that the boundary layer trip method successfully promotes transition at the location representative of full-scale blades, avoiding unrepresentative laminar shock wave boundary layer interactions. This highlights the importance of conditioning boundary layers in low Reynolds number fan rig testing.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/158035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/158035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Boundary layer control for low Reynolds number fan rig testing
Ultra-high bypass ratio turbofans offer significant reductions in fuel and pollution due to their higher propulsive efficiency. Short intakes might lead to a stronger fan-intake interaction, which creates uncertainty in stability at off-design conditions. Due to the prohibitive cost of full-scale experimental testing, subscale testing in wind tunnels is used to understand this behaviour. The low Reynolds number of subscale models results in unrepresentative laminar shock-boundary layer interactions. The boundary layer state thus needs to be conditioned to better represent full-scale transonic fans. This paper proposes the use of an inexpensive and robust flow control method for the suction side of a fan blade. Design guidelines are given for the location and height of the discrete roughness elements used to control the boundary layer state. This paper also presents a rapid experimental validation methodology to ensure and de-risk the application of the boundary layer trip to 3D rig blades. The experimental methodology is applied to a generic aerofoil representative of a fan tip section. The experimental method proves that it is possible to reproduce boundary layers and pressure distributions of a full-scale fan blade on a 1/10 subscale model. The results obtained confirm that the boundary layer trip method successfully promotes transition at the location representative of full-scale blades, avoiding unrepresentative laminar shock wave boundary layer interactions. This highlights the importance of conditioning boundary layers in low Reynolds number fan rig testing.