{"title":"用ABSTAT概要文件理解知识图的结构","authors":"Blerina Spahiu, Matteo Palmonari, Renzo Arturo Alva Principe, Anisa Rula","doi":"10.3233/sw-223181","DOIUrl":null,"url":null,"abstract":"While there has been a trend in the last decades for publishing large-scale and highly-interconnected Knowledge Graphs (KGs), their users often get overwhelmed by the task of understanding their content as a result of their size and complexity. Data profiling approaches have been proposed to summarize large KGs into concise and meaningful representations, so that they can be better explored, processed, and managed. Profiles based on schema patterns represent each triple in a KG with its schema-level counterpart, thus covering the entire KG with profiles of considerable size. In this paper, we provide empirical evidence that profiles based on schema patterns, if explored with suitable mechanisms, can be useful to help users understand the content of big and complex KGs. ABSTAT provides concise pattern-based profiles and comes with faceted interfaces for profile exploration. Using this tool we present a user study based on query completion tasks. We demonstrate that users who look at ABSTAT profiles formulate their queries better and faster than users browsing the ontology of the KGs. The latter is a pretty strong baseline considering that many KGs do not even come with a specific ontology to be explored by the users. To the best of our knowledge, this is the first attempt to investigate the impact of profiling techniques on tasks related to knowledge graph understanding with a user study.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"49 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the structure of knowledge graphs with ABSTAT profiles\",\"authors\":\"Blerina Spahiu, Matteo Palmonari, Renzo Arturo Alva Principe, Anisa Rula\",\"doi\":\"10.3233/sw-223181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While there has been a trend in the last decades for publishing large-scale and highly-interconnected Knowledge Graphs (KGs), their users often get overwhelmed by the task of understanding their content as a result of their size and complexity. Data profiling approaches have been proposed to summarize large KGs into concise and meaningful representations, so that they can be better explored, processed, and managed. Profiles based on schema patterns represent each triple in a KG with its schema-level counterpart, thus covering the entire KG with profiles of considerable size. In this paper, we provide empirical evidence that profiles based on schema patterns, if explored with suitable mechanisms, can be useful to help users understand the content of big and complex KGs. ABSTAT provides concise pattern-based profiles and comes with faceted interfaces for profile exploration. Using this tool we present a user study based on query completion tasks. We demonstrate that users who look at ABSTAT profiles formulate their queries better and faster than users browsing the ontology of the KGs. The latter is a pretty strong baseline considering that many KGs do not even come with a specific ontology to be explored by the users. To the best of our knowledge, this is the first attempt to investigate the impact of profiling techniques on tasks related to knowledge graph understanding with a user study.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-223181\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-223181","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Understanding the structure of knowledge graphs with ABSTAT profiles
While there has been a trend in the last decades for publishing large-scale and highly-interconnected Knowledge Graphs (KGs), their users often get overwhelmed by the task of understanding their content as a result of their size and complexity. Data profiling approaches have been proposed to summarize large KGs into concise and meaningful representations, so that they can be better explored, processed, and managed. Profiles based on schema patterns represent each triple in a KG with its schema-level counterpart, thus covering the entire KG with profiles of considerable size. In this paper, we provide empirical evidence that profiles based on schema patterns, if explored with suitable mechanisms, can be useful to help users understand the content of big and complex KGs. ABSTAT provides concise pattern-based profiles and comes with faceted interfaces for profile exploration. Using this tool we present a user study based on query completion tasks. We demonstrate that users who look at ABSTAT profiles formulate their queries better and faster than users browsing the ontology of the KGs. The latter is a pretty strong baseline considering that many KGs do not even come with a specific ontology to be explored by the users. To the best of our knowledge, this is the first attempt to investigate the impact of profiling techniques on tasks related to knowledge graph understanding with a user study.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.