评价多层网络的团体检测算法:链路权重和链路方向的有效性

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Complex Systems Pub Date : 2023-10-15 DOI:10.25088/complexsystems.32.2.211
Daiki Suzuki, Sho Tsugawa
{"title":"评价多层网络的团体检测算法:链路权重和链路方向的有效性","authors":"Daiki Suzuki, Sho Tsugawa","doi":"10.25088/complexsystems.32.2.211","DOIUrl":null,"url":null,"abstract":"Analyzing the structures of multilayer networks (MLNs) has been a hot research topic in network science. Community detection algorithms are important tools for analyzing MLNs. In the literature, several community detection algorithms for MLNs have been proposed. Moreover, there are several options for the graph representation of an MLN: for example, directed or undirected, weighted or unweighted, and using information from all or only some layers. Although these options may affect the results of community detection in MLNs, representations that are effective for community detection have not yet been clarified. In this paper, we experimentally evaluate the effectiveness of three types of community detection algorithms for MLNs and examine how the graph representation of an MLN affects the results of these algorithms. Our main findings are as follows: (1) The flattening approach is particularly effective, whereas the layer-by-layer approach is not applicable to detecting communities in MLNs of Twitter users. (2) Using a directed graph for each layer of an MLN increases the accuracy of community detection. (3) The Leiden method, which is a community detection algorithm for single-layer networks, achieves comparable accuracy with the community detection algorithms for MLNs, which suggests that there exists room for improvement in multilayer community detection algorithms for effectively utilizing the multilayer structures of MLNs.","PeriodicalId":46935,"journal":{"name":"Complex Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Community Detection Algorithms for Multilayer Networks: Effectiveness of Link Weights and Link Direction\",\"authors\":\"Daiki Suzuki, Sho Tsugawa\",\"doi\":\"10.25088/complexsystems.32.2.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing the structures of multilayer networks (MLNs) has been a hot research topic in network science. Community detection algorithms are important tools for analyzing MLNs. In the literature, several community detection algorithms for MLNs have been proposed. Moreover, there are several options for the graph representation of an MLN: for example, directed or undirected, weighted or unweighted, and using information from all or only some layers. Although these options may affect the results of community detection in MLNs, representations that are effective for community detection have not yet been clarified. In this paper, we experimentally evaluate the effectiveness of three types of community detection algorithms for MLNs and examine how the graph representation of an MLN affects the results of these algorithms. Our main findings are as follows: (1) The flattening approach is particularly effective, whereas the layer-by-layer approach is not applicable to detecting communities in MLNs of Twitter users. (2) Using a directed graph for each layer of an MLN increases the accuracy of community detection. (3) The Leiden method, which is a community detection algorithm for single-layer networks, achieves comparable accuracy with the community detection algorithms for MLNs, which suggests that there exists room for improvement in multilayer community detection algorithms for effectively utilizing the multilayer structures of MLNs.\",\"PeriodicalId\":46935,\"journal\":{\"name\":\"Complex Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.32.2.211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25088/complexsystems.32.2.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多层网络的结构分析一直是网络科学研究的热点。社区检测算法是分析mln的重要工具。在文献中,已经提出了几种针对mln的社区检测算法。此外,MLN的图表示有几种选择:例如,有向或无向,加权或未加权,以及使用所有或仅使用某些层的信息。虽然这些选项可能会影响mln中社区检测的结果,但对社区检测有效的表示尚未明确。在本文中,我们实验评估了三种类型的MLN社区检测算法的有效性,并研究了MLN的图表示如何影响这些算法的结果。我们的主要发现如下:(1)扁平化方法特别有效,而逐层方法不适用于Twitter用户mln中的社区检测。(2)对MLN的每一层使用有向图,提高了社区检测的准确性。(3) Leiden方法是一种针对单层网络的社团检测算法,其准确率与针对mln的社团检测算法相当,说明为了有效利用mln的多层结构,多层社团检测算法还有改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Community Detection Algorithms for Multilayer Networks: Effectiveness of Link Weights and Link Direction
Analyzing the structures of multilayer networks (MLNs) has been a hot research topic in network science. Community detection algorithms are important tools for analyzing MLNs. In the literature, several community detection algorithms for MLNs have been proposed. Moreover, there are several options for the graph representation of an MLN: for example, directed or undirected, weighted or unweighted, and using information from all or only some layers. Although these options may affect the results of community detection in MLNs, representations that are effective for community detection have not yet been clarified. In this paper, we experimentally evaluate the effectiveness of three types of community detection algorithms for MLNs and examine how the graph representation of an MLN affects the results of these algorithms. Our main findings are as follows: (1) The flattening approach is particularly effective, whereas the layer-by-layer approach is not applicable to detecting communities in MLNs of Twitter users. (2) Using a directed graph for each layer of an MLN increases the accuracy of community detection. (3) The Leiden method, which is a community detection algorithm for single-layer networks, achieves comparable accuracy with the community detection algorithms for MLNs, which suggests that there exists room for improvement in multilayer community detection algorithms for effectively utilizing the multilayer structures of MLNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Systems
Complex Systems MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.80
自引率
25.00%
发文量
18
期刊最新文献
Hash Function Design Based on Hybrid Five-Neighborhood Cellular Automata and Sponge Functions One-Dimensional Cellular Automaton Transitions and Integral Value Transformations Representing Deoxyribonucleic Acid Sequence Evolutions Analyzing and Extending Cellular Automaton Simulations of Dynamic Recrystallization A Cellular Automaton-Based Technique for Estimating Mineral Resources Special Issue: Selected Papers from the First Asian Symposium on Cellular Automata Technology, 2022 (ASCAT 2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1