{"title":"揭示植物油对食源性病原菌的抑菌活性并加以利用","authors":"Vijaya Samoondeeswari Selvarajan, Ramganesh Selvarajan, Jeevan Pandiyan, Akebe Luther King Abia","doi":"10.3390/microbiolres14030087","DOIUrl":null,"url":null,"abstract":"The rising concerns regarding antibiotic resistance and the harmful effects of synthetic preservatives have led to an increasing interest in exploring natural alternatives. Plant oils have been traditionally used for their antimicrobial properties, but systematic investigations into their efficacy against foodborne pathogens are necessary for potential applications in food preservation. This study aimed to evaluate the antibacterial potential of various plant oils (neem, coconut, castor, and olive oil) against common foodborne pathogens and analyze their chemical composition using gas chromatography–mass spectrometry (GC-MS). The oils were tested against foodborne pathogens using the disk diffusion method. Minimum inhibitory concentrations (MICs) were determined to assess the potency of the oils. GC-MS was employed to identify the compounds present in each oil. Neem oil exhibited significant antibacterial activity against all tested pathogens, with pronounced effects against Staphylococcus aureus and Bacillus cereus. Coconut oil showed notable activity against Listeria monocytogenes. Castor oil displayed moderate activity, while olive oil exhibited minimal antibacterial effects. The GC-MS analysis revealed a diverse array of compounds in neem oil, which is likely to contribute to its potent antibacterial properties. Neem and coconut oils, owing to their rich bioactive components, emerged as promising candidates for the development of natural antimicrobial agents. These brief findings support the potential application of plant oils in food preservation and emphasize the need for further research into understanding the underlying mechanisms and optimizing their use.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens\",\"authors\":\"Vijaya Samoondeeswari Selvarajan, Ramganesh Selvarajan, Jeevan Pandiyan, Akebe Luther King Abia\",\"doi\":\"10.3390/microbiolres14030087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rising concerns regarding antibiotic resistance and the harmful effects of synthetic preservatives have led to an increasing interest in exploring natural alternatives. Plant oils have been traditionally used for their antimicrobial properties, but systematic investigations into their efficacy against foodborne pathogens are necessary for potential applications in food preservation. This study aimed to evaluate the antibacterial potential of various plant oils (neem, coconut, castor, and olive oil) against common foodborne pathogens and analyze their chemical composition using gas chromatography–mass spectrometry (GC-MS). The oils were tested against foodborne pathogens using the disk diffusion method. Minimum inhibitory concentrations (MICs) were determined to assess the potency of the oils. GC-MS was employed to identify the compounds present in each oil. Neem oil exhibited significant antibacterial activity against all tested pathogens, with pronounced effects against Staphylococcus aureus and Bacillus cereus. Coconut oil showed notable activity against Listeria monocytogenes. Castor oil displayed moderate activity, while olive oil exhibited minimal antibacterial effects. The GC-MS analysis revealed a diverse array of compounds in neem oil, which is likely to contribute to its potent antibacterial properties. Neem and coconut oils, owing to their rich bioactive components, emerged as promising candidates for the development of natural antimicrobial agents. These brief findings support the potential application of plant oils in food preservation and emphasize the need for further research into understanding the underlying mechanisms and optimizing their use.\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres14030087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14030087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens
The rising concerns regarding antibiotic resistance and the harmful effects of synthetic preservatives have led to an increasing interest in exploring natural alternatives. Plant oils have been traditionally used for their antimicrobial properties, but systematic investigations into their efficacy against foodborne pathogens are necessary for potential applications in food preservation. This study aimed to evaluate the antibacterial potential of various plant oils (neem, coconut, castor, and olive oil) against common foodborne pathogens and analyze their chemical composition using gas chromatography–mass spectrometry (GC-MS). The oils were tested against foodborne pathogens using the disk diffusion method. Minimum inhibitory concentrations (MICs) were determined to assess the potency of the oils. GC-MS was employed to identify the compounds present in each oil. Neem oil exhibited significant antibacterial activity against all tested pathogens, with pronounced effects against Staphylococcus aureus and Bacillus cereus. Coconut oil showed notable activity against Listeria monocytogenes. Castor oil displayed moderate activity, while olive oil exhibited minimal antibacterial effects. The GC-MS analysis revealed a diverse array of compounds in neem oil, which is likely to contribute to its potent antibacterial properties. Neem and coconut oils, owing to their rich bioactive components, emerged as promising candidates for the development of natural antimicrobial agents. These brief findings support the potential application of plant oils in food preservation and emphasize the need for further research into understanding the underlying mechanisms and optimizing their use.
期刊介绍:
Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.