{"title":"混凝土裂缝监测用微胶囊型长效磷光传感器的研制","authors":"Yayun Zhao, Yao Li, Qing Wang, Haohui Zhang","doi":"10.1155/2023/6061653","DOIUrl":null,"url":null,"abstract":"The generation and expansion of cracks in concrete structures reduce the durability and safety of structures. In order to detect cracks in concrete structures, a long-lasting phosphorescent microcapsule coating is proposed in this study. The microcapsule-based sensor is pasted on the surface of cement-based materials and solidified. The microcapsules become ruptured and cause the core material to flow out when the microcracks occur on the material, which emits strong phosphorescence at the cracked position under UV irradiation. The results indicate that the successful encapsulation of microcapsules could enhance the thermal stability of phosphorescent dye. The excitation wavelength of the phosphorescent microcapsules is also investigated. The phosphorescent microcapsules could effectively highlight unnoticeable cracks by a long-lasting phosphorescence response in the cracking region. The mechanical properties of microcapsules/epoxy resin composite coatings were studied, and the optimal content of microcapsules in the coating was determined. The as-fabricated phosphorescent microcapsules have good damage-sensing effects in conditions of different light and temperatures. The method proposed in this study will assist in the further development of damage-sensing material in the field of concrete crack monitoring.","PeriodicalId":48981,"journal":{"name":"Structural Control & Health Monitoring","volume":"35 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Microcapsule-Type Long-Lasting Phosphorescent Sensor for Concrete Crack Monitoring\",\"authors\":\"Yayun Zhao, Yao Li, Qing Wang, Haohui Zhang\",\"doi\":\"10.1155/2023/6061653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation and expansion of cracks in concrete structures reduce the durability and safety of structures. In order to detect cracks in concrete structures, a long-lasting phosphorescent microcapsule coating is proposed in this study. The microcapsule-based sensor is pasted on the surface of cement-based materials and solidified. The microcapsules become ruptured and cause the core material to flow out when the microcracks occur on the material, which emits strong phosphorescence at the cracked position under UV irradiation. The results indicate that the successful encapsulation of microcapsules could enhance the thermal stability of phosphorescent dye. The excitation wavelength of the phosphorescent microcapsules is also investigated. The phosphorescent microcapsules could effectively highlight unnoticeable cracks by a long-lasting phosphorescence response in the cracking region. The mechanical properties of microcapsules/epoxy resin composite coatings were studied, and the optimal content of microcapsules in the coating was determined. The as-fabricated phosphorescent microcapsules have good damage-sensing effects in conditions of different light and temperatures. The method proposed in this study will assist in the further development of damage-sensing material in the field of concrete crack monitoring.\",\"PeriodicalId\":48981,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6061653\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6061653","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Microcapsule-Type Long-Lasting Phosphorescent Sensor for Concrete Crack Monitoring
The generation and expansion of cracks in concrete structures reduce the durability and safety of structures. In order to detect cracks in concrete structures, a long-lasting phosphorescent microcapsule coating is proposed in this study. The microcapsule-based sensor is pasted on the surface of cement-based materials and solidified. The microcapsules become ruptured and cause the core material to flow out when the microcracks occur on the material, which emits strong phosphorescence at the cracked position under UV irradiation. The results indicate that the successful encapsulation of microcapsules could enhance the thermal stability of phosphorescent dye. The excitation wavelength of the phosphorescent microcapsules is also investigated. The phosphorescent microcapsules could effectively highlight unnoticeable cracks by a long-lasting phosphorescence response in the cracking region. The mechanical properties of microcapsules/epoxy resin composite coatings were studied, and the optimal content of microcapsules in the coating was determined. The as-fabricated phosphorescent microcapsules have good damage-sensing effects in conditions of different light and temperatures. The method proposed in this study will assist in the further development of damage-sensing material in the field of concrete crack monitoring.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.