{"title":"H13工具钢粉末选择性激光熔化:工艺参数对复杂零件生产的影响","authors":"F. Impaziente, L. Giorleo, F. Mazzucato","doi":"10.1007/s40964-023-00504-w","DOIUrl":null,"url":null,"abstract":"Abstract This research work presents the investigation of H13 tool steel powder in the production of parts characterized by complex features via selective laser melting. The authors proposed a benchmark geometry with 40 mm nominal height, self-supported overhanging structure and internal channels. To investigate powder printability and process capabilities, an experimental campaign was designed as a function of laser power, scan speed and hatching distance. Full dense parts exhibiting 99.92% internal density have been achieved by imposing a laser power equal to 150 W, a scan speed equal to 500 mm/s and a hatching distance equal to 120 µm, while high geometrical accuracy in terms of no material drops along sample edges and low-dimensional deviations of the realized sloping surfaces (i.e., + 0.23° and − 0.90° for nominal 35° and 40° overhang, respectively) has been achieved for 150 W, 1000 mm/s, and 100 µm. Findings open the way to use SLM technology in the design of advanced cutting tool solutions.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"64 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective laser melting of H13 tool steel powder: effect of process parameter on complex part production\",\"authors\":\"F. Impaziente, L. Giorleo, F. Mazzucato\",\"doi\":\"10.1007/s40964-023-00504-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research work presents the investigation of H13 tool steel powder in the production of parts characterized by complex features via selective laser melting. The authors proposed a benchmark geometry with 40 mm nominal height, self-supported overhanging structure and internal channels. To investigate powder printability and process capabilities, an experimental campaign was designed as a function of laser power, scan speed and hatching distance. Full dense parts exhibiting 99.92% internal density have been achieved by imposing a laser power equal to 150 W, a scan speed equal to 500 mm/s and a hatching distance equal to 120 µm, while high geometrical accuracy in terms of no material drops along sample edges and low-dimensional deviations of the realized sloping surfaces (i.e., + 0.23° and − 0.90° for nominal 35° and 40° overhang, respectively) has been achieved for 150 W, 1000 mm/s, and 100 µm. Findings open the way to use SLM technology in the design of advanced cutting tool solutions.\",\"PeriodicalId\":36643,\"journal\":{\"name\":\"Progress in Additive Manufacturing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40964-023-00504-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00504-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
摘要:本文研究了H13工具钢粉末在激光选择性熔化加工复杂零件中的应用。作者提出了一个基准几何形状,标称高度为40毫米,自支撑悬挑结构和内部通道。为了研究粉末的打印性能和工艺性能,设计了一个实验运动,作为激光功率、扫描速度和孵化距离的函数。满密集部分表现出99.92%的内部已经通过征收激光功率密度等于150 W,扫描速度等于500 mm / s和孵化的距离等于120µm,而几何精度高的材料下降沿边缘和低维样本偏差的意识到倾斜的表面(例如,+ 0.23°,−0.90°名义35°和40°过剩,分别)已经达到150 W, 1000 mm / s, 100µm。研究结果为在先进切削刀具解决方案的设计中使用SLM技术开辟了道路。
Selective laser melting of H13 tool steel powder: effect of process parameter on complex part production
Abstract This research work presents the investigation of H13 tool steel powder in the production of parts characterized by complex features via selective laser melting. The authors proposed a benchmark geometry with 40 mm nominal height, self-supported overhanging structure and internal channels. To investigate powder printability and process capabilities, an experimental campaign was designed as a function of laser power, scan speed and hatching distance. Full dense parts exhibiting 99.92% internal density have been achieved by imposing a laser power equal to 150 W, a scan speed equal to 500 mm/s and a hatching distance equal to 120 µm, while high geometrical accuracy in terms of no material drops along sample edges and low-dimensional deviations of the realized sloping surfaces (i.e., + 0.23° and − 0.90° for nominal 35° and 40° overhang, respectively) has been achieved for 150 W, 1000 mm/s, and 100 µm. Findings open the way to use SLM technology in the design of advanced cutting tool solutions.
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts