在高耦合强度、大模体积和超高q微腔中产生高能效孤子微梳

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.101902
Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu
{"title":"在高耦合强度、大模体积和超高q微腔中产生高能效孤子微梳","authors":"Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu","doi":"10.3788/col202321.101902","DOIUrl":null,"url":null,"abstract":"The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"4 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity\",\"authors\":\"Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu\",\"doi\":\"10.3788/col202321.101902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.101902\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.101902","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

微腔中时间耗散孤子的非线性物理动力学阻碍了它们从典型的非线性能量转换效率小于1%的泵浦激光器中获得高功率。在这里,我们通过实验证明了一种使用高耦合强度、大模体积和高q因子的硅微棒腔来提高孤子梳输出功率的直接方法,从而产生低重复率的耗散孤子(~ 21 GHz),能量转换效率超过20%。此外,通过在微腔中产生一个~ 105 GHz5×FSR(自由光谱范围)的孤子晶体梳,能量转换效率可进一步提高到56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity
The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1