包络和主成分回归

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2023-01-01 DOI:10.1214/23-ejs2154
Xin Zhang, Kai Deng, Qing Mai
{"title":"包络和主成分回归","authors":"Xin Zhang, Kai Deng, Qing Mai","doi":"10.1214/23-ejs2154","DOIUrl":null,"url":null,"abstract":"Envelope methods offer targeted dimension reduction for various statistical models. The goal is to improve efficiency in multivariate parameter estimation by projecting the data onto a lower-dimensional subspace known as the envelope. Envelope approaches have advantages in analyzing data with highly correlated variables, but their iterative Grassmannian optimization algorithms do not scale very well with high-dimensional data. While the connections between envelopes and partial least squares in multivariate linear regression have promoted recent progress in high-dimensional studies of envelopes, we propose a more straightforward way of envelope modeling from a new principal component regression perspective. The proposed procedure, Non-Iterative Envelope Component Estimation (NIECE), has excellent computational advantages over the iterative Grassmannian optimization alternatives in high dimensions. We develop a unified theory that bridges the gap between envelope methods and principal components in regression. The new theoretical insights also shed light on the envelope subspace estimation error as a function of eigenvalue gaps of two symmetric positive definite matrices used in envelope modeling. We apply the new theory and algorithm to several envelope models, including response and predictor reduction in multivariate linear models, logistic regression, and Cox proportional hazard model. Simulations and illustrative data analysis show the potential for NIECE to improve standard methods in linear and generalized linear models significantly.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"24 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Envelopes and principal component regression\",\"authors\":\"Xin Zhang, Kai Deng, Qing Mai\",\"doi\":\"10.1214/23-ejs2154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Envelope methods offer targeted dimension reduction for various statistical models. The goal is to improve efficiency in multivariate parameter estimation by projecting the data onto a lower-dimensional subspace known as the envelope. Envelope approaches have advantages in analyzing data with highly correlated variables, but their iterative Grassmannian optimization algorithms do not scale very well with high-dimensional data. While the connections between envelopes and partial least squares in multivariate linear regression have promoted recent progress in high-dimensional studies of envelopes, we propose a more straightforward way of envelope modeling from a new principal component regression perspective. The proposed procedure, Non-Iterative Envelope Component Estimation (NIECE), has excellent computational advantages over the iterative Grassmannian optimization alternatives in high dimensions. We develop a unified theory that bridges the gap between envelope methods and principal components in regression. The new theoretical insights also shed light on the envelope subspace estimation error as a function of eigenvalue gaps of two symmetric positive definite matrices used in envelope modeling. We apply the new theory and algorithm to several envelope models, including response and predictor reduction in multivariate linear models, logistic regression, and Cox proportional hazard model. Simulations and illustrative data analysis show the potential for NIECE to improve standard methods in linear and generalized linear models significantly.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2154\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2154","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

包络方法为各种统计模型提供了有针对性的降维。目标是通过将数据投影到称为包络的低维子空间来提高多变量参数估计的效率。包络方法在分析具有高度相关变量的数据时具有优势,但其迭代格拉斯曼优化算法在高维数据时不能很好地扩展。多元线性回归中包络和偏最小二乘之间的联系促进了高维包络研究的最新进展,我们从新的主成分回归角度提出了一种更直接的包络建模方法。所提出的非迭代包络分量估计(Non-Iterative Envelope Component Estimation,简称侄女)方法,在高维情况下比迭代格拉斯曼优化方法具有优异的计算优势。我们发展了一个统一的理论,弥合了回归中包络方法和主成分之间的差距。新的理论见解还揭示了包络子空间估计误差作为两个对称正定矩阵特征值间隙的函数用于包络建模。我们将新的理论和算法应用于几种包络模型,包括多元线性模型的响应和预测因子减少,逻辑回归和Cox比例风险模型。模拟和说明性数据分析表明,甥女在线性和广义线性模型中的标准方法有很大的改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Envelopes and principal component regression
Envelope methods offer targeted dimension reduction for various statistical models. The goal is to improve efficiency in multivariate parameter estimation by projecting the data onto a lower-dimensional subspace known as the envelope. Envelope approaches have advantages in analyzing data with highly correlated variables, but their iterative Grassmannian optimization algorithms do not scale very well with high-dimensional data. While the connections between envelopes and partial least squares in multivariate linear regression have promoted recent progress in high-dimensional studies of envelopes, we propose a more straightforward way of envelope modeling from a new principal component regression perspective. The proposed procedure, Non-Iterative Envelope Component Estimation (NIECE), has excellent computational advantages over the iterative Grassmannian optimization alternatives in high dimensions. We develop a unified theory that bridges the gap between envelope methods and principal components in regression. The new theoretical insights also shed light on the envelope subspace estimation error as a function of eigenvalue gaps of two symmetric positive definite matrices used in envelope modeling. We apply the new theory and algorithm to several envelope models, including response and predictor reduction in multivariate linear models, logistic regression, and Cox proportional hazard model. Simulations and illustrative data analysis show the potential for NIECE to improve standard methods in linear and generalized linear models significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1